当前位置:  开发笔记 > 人工智能 > 正文

解决Pytorch训练过程中loss不下降的问题

今天小编就为大家分享一篇解决Pytorch训练过程中loss不下降的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题。出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等。不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配。

下面是我的代码:

loss_function = torch.nn.MSE_loss()
optimizer.zero_grad()
output = model(x_train)
loss = loss_function(output, y_train)
loss.backward()
optimizer.step()

要特别注意计算loss时网络输出值output和真实值y_train的维数必须完全匹配,否则训练误差不下降,无法训练。这种错误在训练一维数据时很容易忽略,要十分注意。

以上这篇解决Pytorch训练过程中loss不下降的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

推荐阅读
手机用户2402852307
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有