当前位置:  开发笔记 > 人工智能 > 正文

PyTorch中 tensor.detach() 和 tensor.data 的区别详解

今天小编就为大家分享一篇PyTorch中tensor.detach()和tensor.data的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。

.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.

举例:

tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 反向传播
>>> a.grad    # 这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])

tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an

以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

推荐阅读
赛亚兔备_393
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有