在散列表中,每个桶/槽会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中;当散列冲突比较多时,链表的长度也会变长,查询hash值需要遍历链表,这时查询效率就会从O(1)退化成O(n)。
这种解决散列冲突的处理方法比较适合大对象、大数据量的散列表,而且,支持更多的优化策略,比如使用红黑树代替链表;jdk1.8为了对HashMap做进一步优化,引入了红黑树,当链表长度太长(默认超过8)时,链表就会转换成红黑树,这时可以利用红黑树快速增删查改的特点,提高HashMap的性能,当红黑树节点个数小于8个时,又将红黑树转化成为链表,因为在数据量比较小的情况下,红黑树要维护平衡,比起链表,性能上的优势并不明显。
2. 哈希算法的应用场景最常用于加密的哈希算法是MD5(MD5 Message-Digest Algorithm)和SHA(Secure Hash Algorithm 安全散列算法),利用hash的特点计算出来的hash值很难反向推导原始数据,从而达到加密的目的。
以MD5为例子,哈希值是固定的128位二进制串,最多能表示 2^128 个数据,这个数据已经是天文数字了,散列冲突的概率要小于1/2^128,如果希望通过穷举法来找到跟这个MD5相同的另一个数据,那耗费的时间也应该是天文数字了,所以在有限的时间内哈希算法还是很难被破解的,这也就达到了加密效果了。
利用Hash函数对数据敏感的特点,可以用来校验网络传输过程中的数据是否正确,防止被恶意串改。
利用hash函数相对均匀分布的特点,取hash值作为数据存储的位置值,让数据均匀分布在容器里面。
通过hash算法,对客户端id地址或者会话id进行计算hash值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。
假如我们有1T的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?数据量比较大,很难放到一台机的内存中,即使放到一台机子上,处理时间也会很长,针对这个问题,我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。
具体的思路是:为了提高处理速度,我们用n台机器并行处理。从搜索记录的日志文件中,依次独处每个搜索关键词,并通过哈希函数计算哈希值,然后再跟n取模,最终得到的值,就是应该被分配到的机器编号;这样哈希值相同的搜索关键词就被分配到了同一台机器上,每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。实际上,这里的处理过程也是MapReduce的基本设计思想。
对于海量的数据需要缓存的情况,一台缓存机器肯定是不够的,于是,我们就需要将数据分布在多台机器上。 这时,我们可以借助前面的分片思想,即通过哈希算法对数据取哈希值,然后对机器个数取模,得到应该存储的缓存机器编号。
但是,如果数据增多,原来的10台机器已无法承受,需要扩容了,这时是如果所有数据都重新计算哈希值,然后重新搬移到正确的机器上,那就相当于所有的缓存数据一下子都失效了,会穿透缓存回源到数据库,这样就可能发生雪崩效应,压垮数据库。为了新增缓存机器不搬移所有的数据,一致性哈希算法就是比较好的选择了,主要的思想是:假设我们有kge机器,数据的哈希值范围是[0,Max],我们将整个范围划分成m个小区间(m远大于k),每个机器负责m/k个小区间,当有新机器加入时,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中,这样,即不用全部重新哈希、搬移数据,也保持了各个机器上数据量的平衡。
3. 写在最后实际上,哈希算法还有很多其他的应用,比如git commit id等等,很多应用都来自于对算法的理解和扩展,也是基础的数据结构和算法的价值体现,需要我们在工作中慢慢理解和体会。
推荐教程:《Java教程》
以上就是常用算法之哈希算法的详细内容,更多请关注其它相关文章!