当前位置:  开发笔记 > 人工智能 > 正文

pytorch 常用函数 max ,eq说明

这篇文章主要介绍了pytorch常用函数maxeq说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

max找出tensor 的行或者列最大的值:

找出每行的最大值:

import torch
outputs=torch.FloatTensor([[1],[2],[3]])
print(torch.max(outputs.data,1))

输出:

(tensor([ 1., 2., 3.]), tensor([ 0, 0, 0]))

找出每列的最大值:

import torch
outputs=torch.FloatTensor([[1],[2],[3]])
print(torch.max(outputs.data,0))

输出结果:

(tensor([ 3.]), tensor([ 2]))

Tensor比较eq相等:

import torch

outputs=torch.FloatTensor([[1],[2],[3]])
targets=torch.FloatTensor([[0],[2],[3]])
print(targets.eq(outputs.data))

输出结果:

tensor([[ 0],
[ 1],
[ 1]], dtype=torch.uint8)

使用sum() 统计相等的个数:

import torch

outputs=torch.FloatTensor([[1],[2],[3]])
targets=torch.FloatTensor([[0],[2],[3]])
print(targets.eq(outputs.data).cpu().sum())

输出结果:

tensor(2)

补充知识:PyTorch - torch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.le

flyfish

torch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.le

以上全是简写

参数是input, other, out=None

逐元素比较input和other

返回是torch.BoolTensor

import torch

a=torch.tensor([[1, 2], [3, 4]])
b=torch.tensor([[1, 2], [4, 3]])

print(torch.eq(a,b))#equals
# tensor([[ True, True],
#     [False, False]])

print(torch.ne(a,b))#not equal to
# tensor([[False, False],
#     [ True, True]])

print(torch.gt(a,b))#greater than
# tensor([[False, False],
#     [False, True]])

print(torch.lt(a,b))#less than
# tensor([[False, False],
#     [ True, False]])

print(torch.ge(a,b))#greater than or equal to
# tensor([[ True, True],
#     [False, True]])

print(torch.le(a,b))#less than or equal to
# tensor([[ True, True],
#     [ True, False]])

以上这篇pytorch 常用函数 max ,eq说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

推荐阅读
k78283381
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有