def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width] x = x.view(batch_size, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batch_size, -1, height, width) return x
class InvertedResidual(nn.Module): def __init__(self, input_c: int, output_c: int, stride: int): super(InvertedResidual, self).__init__() if stride not in [1, 2]: raise ValueError("illegal stride value.") self.stride = stride assert output_c % 2 == 0 branch_features = output_c // 2 # 当stride为1时,input_channel应该是branch_features的两倍 # python中 '<<' 是位运算,可理解为计算×2的快速方法 assert (self.stride != 1) or (input_c == branch_features << 1) if self.stride == 2: self.branch1 = nn.Sequential( self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(input_c), nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) @staticmethod def depthwise_conv(input_c: int, output_c: int, kernel_s: int, stride: int = 1, padding: int = 0, bias: bool = False) -> nn.Conv2d: return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s, stride=stride, padding=padding, bias=bias, groups=input_c) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out
class ShuffleNetV2(nn.Module): def __init__(self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual): super(ShuffleNetV2, self).__init__() if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels # input RGB image input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = ["stage{}".format(i) for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # global pool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x)
到此这篇关于Python深度学习之使用Pytorch搭建ShuffleNetv2的文章就介绍到这了,更多相关Python用Pytorch搭建ShuffleNetv2内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!