我有DataFrame
几个时间序列:
divida movav12 var varmovav12 Date 2004-01 0 NaN NaN NaN 2004-02 0 NaN NaN NaN 2004-03 0 NaN NaN NaN 2004-04 34 NaN inf NaN 2004-05 30 NaN -0.117647 NaN 2004-06 44 NaN 0.466667 NaN 2004-07 35 NaN -0.204545 NaN 2004-08 31 NaN -0.114286 NaN 2004-09 30 NaN -0.032258 NaN 2004-10 24 NaN -0.200000 NaN 2004-11 41 NaN 0.708333 NaN 2004-12 29 24.833333 -0.292683 NaN 2005-01 31 27.416667 0.068966 0.104027 2005-02 28 29.750000 -0.096774 0.085106 2005-03 27 32.000000 -0.035714 0.075630 2005-04 30 31.666667 0.111111 -0.010417 2005-05 31 31.750000 0.033333 0.002632 2005-06 39 31.333333 0.258065 -0.013123 2005-07 36 31.416667 -0.076923 0.002660
我想以divida
一种我可以将其趋势与其季节性和残余成分分开的方式来分解第一个时间序列.
我在这里找到了答案,并尝试使用以下代码:
import statsmodels.api as sm s=sm.tsa.seasonal_decompose(divida.divida)
但是我一直收到这个错误:
Traceback (most recent call last): File "/Users/Pred_UnBR_Mod2.py", line 78, ins=sm.tsa.seasonal_decompose(divida.divida) File "/Library/Python/2.7/site-packages/statsmodels/tsa/seasonal.py", line 58, in seasonal_decompose _pandas_wrapper, pfreq = _maybe_get_pandas_wrapper_freq(x) File "/Library/Python/2.7/site-packages/statsmodels/tsa/filters/_utils.py", line 46, in _maybe_get_pandas_wrapper_freq freq = index.inferred_freq AttributeError: 'Index' object has no attribute 'inferred_freq'
有人可以发光吗?
当您转换您的正常工作index
到DateTimeIndex
:
df.reset_index(inplace=True) df['Date'] = pd.to_datetime(df['Date']) df = df.set_index('Date') s=sm.tsa.seasonal_decompose(df.divida)
通过以下方式访问组件
s.resid s.seasonal s.trend