所以我遇到了一个问题,我在RDD上使用的过滤器可能会创建一个空的RDD.我觉得为了测试空虚而做一个count()会非常昂贵,并且想知道是否有更高效的方法来处理这种情况.
以下是此问题的示例:
val b:RDD[String] = sc.parallelize(Seq("a","ab","abc")) println(b.filter(a => !a.contains("a")).reduce(_+_))
会给出结果
empty collection java.lang.UnsupportedOperationException: empty collection at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$apply$36.apply(RDD.scala:1005) at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$apply$36.apply(RDD.scala:1005) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1005) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) at org.apache.spark.rdd.RDD.withScope(RDD.scala:306) at org.apache.spark.rdd.RDD.reduce(RDD.scala:985)
有没有人对如何解决这个边缘案件有任何建议?
考虑.fold("")(_ + _)
而不是.reduce(_ + _)