当前位置:  开发笔记 > 编程语言 > 正文

快速评估大量输入值的数学表达式(函数)

如何解决《快速评估大量输入值的数学表达式(函数)》经验,为你挑选了0个好方法。

以下问题

评估字符串中的数学表达式

用Python解析方程式

在Python中解析用户提供的数学公式的安全方法

在Python中评估来自不安全用户输入的数学方程式

并且他们各自的答案让我想到我如何能够有效地解析一个(或多或少可信的)用户给出的单个数学表达式(一般来说,就这个答案而言)/sf/ask/17360801/来自数据库的20k到30k输入值.我实施了快速而肮脏的基准测试,因此我可以比较不同的解

# Runs with Python 3(.4)
import pprint
import time

# This is what I have
userinput_function = '5*(1-(x*0.1))' # String - numbers should be handled as floats
demo_len = 20000 # Parameter for benchmark (20k to 30k in real life)
print_results = False

# Some database, represented by an array of dicts (simplified for this example)

database_xy = []
for a in range(1, demo_len, 1):
    database_xy.append({
        'x':float(a),
        'y_eval':0,
        'y_sympya':0,
        'y_sympyb':0,
        'y_sympyc':0,
        'y_aevala':0,
        'y_aevalb':0,
        'y_aevalc':0,
        'y_numexpr': 0,
        'y_simpleeval':0
        })

#解决方案#1:eval [是的,完全不安全]

time_start = time.time()
func = eval("lambda x: " + userinput_function)
for item in database_xy:
    item['y_eval'] = func(item['x'])
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('1 eval: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#2a:sympy - evalf(http://www.sympy.org)

import sympy
time_start = time.time()
x = sympy.symbols('x')
sympy_function = sympy.sympify(userinput_function)
for item in database_xy:
    item['y_sympya'] = float(sympy_function.evalf(subs={x:item['x']}))
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('2a sympy: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#2b:sympy - lambdify(http://www.sympy.org)

from sympy.utilities.lambdify import lambdify
import sympy
import numpy
time_start = time.time()
sympy_functionb = sympy.sympify(userinput_function)
func = lambdify(x, sympy_functionb, 'numpy') # returns a numpy-ready function
xx = numpy.zeros(len(database_xy))
for index, item in enumerate(database_xy):
    xx[index] = item['x']
yy = func(xx)
for index, item in enumerate(database_xy):
    item['y_sympyb'] = yy[index]
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('2b sympy: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#2c:sympy - lambdify与numexpr [和numpy](http://www.sympy.org)

from sympy.utilities.lambdify import lambdify
import sympy
import numpy
import numexpr
time_start = time.time()
sympy_functionb = sympy.sympify(userinput_function)
func = lambdify(x, sympy_functionb, 'numexpr') # returns a numpy-ready function
xx = numpy.zeros(len(database_xy))
for index, item in enumerate(database_xy):
    xx[index] = item['x']
yy = func(xx)
for index, item in enumerate(database_xy):
    item['y_sympyc'] = yy[index]
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('2c sympy: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#3a:asteval [基于ast] - 使用string magic(http://newville.github.io/asteval/index.html)

from asteval import Interpreter
aevala = Interpreter()
time_start = time.time()
aevala('def func(x):\n\treturn ' + userinput_function)
for item in database_xy:
    item['y_aevala'] = aevala('func(' + str(item['x']) + ')')
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('3a aeval: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#3b(M Newville):asteval [基于ast] - 解析和运行(http://newville.github.io/asteval/index.html)

from asteval import Interpreter
aevalb = Interpreter()
time_start = time.time()
exprb = aevalb.parse(userinput_function)
for item in database_xy:
    aevalb.symtable['x'] = item['x']
    item['y_aevalb'] = aevalb.run(exprb)
time_end = time.time()
print('3b aeval: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#3c(M Newville):asteval [基于ast] - 解析并运行numpy(http://newville.github.io/asteval/index.html)

from asteval import Interpreter
import numpy
aevalc = Interpreter()
time_start = time.time()
exprc = aevalc.parse(userinput_function)
x = numpy.array([item['x'] for item in database_xy])
aevalc.symtable['x'] = x
y = aevalc.run(exprc)
for index, item in enumerate(database_xy):
    item['y_aevalc'] = y[index]
time_end = time.time()
print('3c aeval: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#4:simpleeval [基于ast](https://github.com/danthedeckie/simpleeval)

from simpleeval import simple_eval
time_start = time.time()
for item in database_xy:
    item['y_simpleeval'] = simple_eval(userinput_function, names={'x': item['x']})
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('4 simpleeval: ' + str(round(time_end - time_start, 4)) + ' seconds')

#解决方案#5 numexpr [和numpy](https://github.com/pydata/numexpr)

import numpy
import numexpr
time_start = time.time()
x = numpy.zeros(len(database_xy))
for index, item in enumerate(database_xy):
    x[index] = item['x']
y = numexpr.evaluate(userinput_function)
for index, item in enumerate(database_xy):
    item['y_numexpr'] = y[index]
time_end = time.time()
if print_results:
    pprint.pprint(database_xy)
print('5 numexpr: ' + str(round(time_end - time_start, 4)) + ' seconds')

在我的旧测试机器上(Python 3.4,Linux 3.11 x86_64,两个内核,1.8GHz),我得到以下结果:

1 eval: 0.0185 seconds
2a sympy: 10.671 seconds
2b sympy: 0.0315 seconds
2c sympy: 0.0348 seconds
3a aeval: 2.8368 seconds
3b aeval: 0.5827 seconds
3c aeval: 0.0246 seconds
4 simpleeval: 1.2363 seconds
5 numexpr: 0.0312 seconds

突出的是令人难以置信的评估速度,尽管我不想在现实生活中使用它.第二个最好的解决方案似乎是numexpr,这取决于numpy - 我想避免的依赖,虽然这不是一个硬性要求.接下来最好的事情是simpleeval,它围绕着ast构建.aeval,另一种基于ast的解决方案,我必须首先将每个浮点输入值转换为字符串,我无法找到方法.sympy最初是我最喜欢的,因为它提供了最灵活,最安全的解决方案,但它最终与最后一个解决方案相距远.

更新1:使用sympy有一种更快的方法.见解2b.它几乎和numexpr一样好,但我不确定sympy是否实际上是在内部使用它.

更新2:sympy实现现在使用sympify而不是简化(根据其主要开发人员的建议,asmeurer - thanks).它不使用numexpr,除非明确要求它这样做(参见解决方案2c).我还根据asteval添加了两个明显更快的解决方案(感谢M Newville).


我还有哪些方法可以进一步加快任何相对安全的解决方案?是否有其他安全(-ish)方法直接使用ast?

推荐阅读
手机用户2402852307
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有