最近,我开始使用Tensorflow + Keras创建神经网络,我想尝试Tensorflow中提供的量化功能.到目前为止,尝试TF教程的示例工作得很好,我有这个基本的工作示例(来自https://www.tensorflow.org/tutorials/keras/basic_classification):
import tensorflow as tf from tensorflow import keras fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() # fashion mnist data labels (indexes related to their respective labelling in the data set) class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] # preprocess the train and test images train_images = train_images / 255.0 test_images = test_images / 255.0 # settings variables input_shape = (train_images.shape[1], train_images.shape[2]) # create the model layers model = keras.Sequential([ keras.layers.Flatten(input_shape=input_shape), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) # compile the model with added settings model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) # train the model epochs = 3 model.fit(train_images, train_labels, epochs=epochs) # evaluate the accuracy of model on test data test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)
现在,我想在学习和分类过程中使用量化.量化文档(https://www.tensorflow.org/performance/quantization)(该页面自2018年9月15日cca以后不再可用)建议使用这段代码:
loss = tf.losses.get_total_loss() tf.contrib.quantize.create_training_graph(quant_delay=2000000) optimizer = tf.train.GradientDescentOptimizer(0.00001) optimizer.minimize(loss)
但是,它不包含有关应该使用此代码的位置或如何将其连接到TF代码的任何信息(甚至不提及使用Keras创建的高级模型).我不知道这个量化部分如何与先前创建的神经网络模型相关.只需在神经网络代码后插入它就会遇到以下错误:
Traceback (most recent call last): File "so.py", line 41, inloss = tf.losses.get_total_loss() File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/losses/util.py", line 112, in get_total_loss return math_ops.add_n(losses, name=name) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/math_ops.py", line 2119, in add_n raise ValueError("inputs must be a list of at least one Tensor with the " ValueError: inputs must be a list of at least one Tensor with the same dtype and shape
是否可以量化以这种方式量化Keras NN模型,还是我遗漏了一些基本的东西?我想到的一个可能的解决方案可能是使用低级TF API而不是Keras(需要做很多工作来构建模型),或者尝试从Keras模型中提取一些较低级别的方法.