我在Keras训练回归问题的神经网络.为什么输出只有一个Dimension,每个Epoch的精度始终显示为acc:0.0000e + 00?
像这样:1000/199873 [..............................] - ETA:5s - 损失:0.0057 - acc:0.0000e + 00
2000/199873 [..............................] - ETA:4s - 损失:0.0058 - acc:0.0000e + 00
3000/199873 [..............................] - ETA:3s - 损失:0.0057 - acc:0.0000e + 00
4000/199873 [..............................] - ETA:3s - 损失:0.0060 - acc:0.0000e + 00 ...
198000/199873 [============================>.] - ETA:0s - 损失:0.0055 - acc:0.0000e + 00
199000/199873 [============================>.] - ETA:0s - 损失:0.0055 - acc:0.0000e + 00
199873/199873 [==============================] - 4s - 损失:0.0055 - acc:0.0000e + 00 - val_loss :0.0180 - val_acc:0.0000e + 00
大纪元50/50但是如果输出是二维或更高,则准确性没有问题.
我的模型如下:`
input_dim = 14 batch_size = 1000 nb_epoch = 50 lrelu = LeakyReLU(alpha = 0.1) model = Sequential() model.add(Dense(126, input_dim=input_dim)) #Dense(output_dim(also hidden wight), input_dim = input_dim) model.add(lrelu) #Activation model.add(Dense(252)) model.add(lrelu) model.add(Dense(1)) model.add(Activation('linear')) model.compile(loss= 'mean_squared_error', optimizer='Adam', metrics=['accuracy']) model.summary() history = model.fit(X_train_1, y_train_1[:,0:1], batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_split=0.2) loss = history.history.get('loss') acc = history.history.get('acc') val_loss = history.history.get('val_loss') val_acc = history.history.get('val_acc') '''saving model''' from keras.models import load_model model.save('XXXXX') del model '''loading model''' model = load_model('XXXXX') '''prediction''' pred = model.predict(X_train_1, batch_size, verbose=1) ans = [np.argmax(r) for r in y_train_1[:,0:1]]
mikal94305.. 11
问题是您的最终模型输出具有线性激活,使模型成为回归,而不是分类问题.当模型根据类正确地对数据进行分类时,定义"准确度",但由于其连续属性,"准确性"实际上没有为回归问题定义.
要么将准确性作为度量标准去掉并切换到完全回归,要么将问题转化为分类问题,使用loss='categorical_crossentropy'
和activation='softmax'
.
这与您的问题类似:链接
有关更多信息,请参阅:StackExchange
问题是您的最终模型输出具有线性激活,使模型成为回归,而不是分类问题.当模型根据类正确地对数据进行分类时,定义"准确度",但由于其连续属性,"准确性"实际上没有为回归问题定义.
要么将准确性作为度量标准去掉并切换到完全回归,要么将问题转化为分类问题,使用loss='categorical_crossentropy'
和activation='softmax'
.
这与您的问题类似:链接
有关更多信息,请参阅:StackExchange