我需要一个某种描述性的例子,展示如何对两类数据进行10倍SVM分类.在MATLAB文档中只有一个例子,但它不是10倍.有人能帮我吗?
这里有一个完整的例子,使用从生物信息工具箱以下功能:svmtrain去,SVMCLASSIFY,CLASSPERF,CROSSVALIND.
load fisheriris %# load iris dataset groups = ismember(species,'setosa'); %# create a two-class problem %# number of cross-validation folds: %# If you have 50 samples, divide them into 10 groups of 5 samples each, %# then train with 9 groups (45 samples) and test with 1 group (5 samples). %# This is repeated ten times, with each group used exactly once as a test set. %# Finally the 10 results from the folds are averaged to produce a single %# performance estimation. k=10; cvFolds = crossvalind('Kfold', groups, k); %# get indices of 10-fold CV cp = classperf(groups); %# init performance tracker for i = 1:k %# for each fold testIdx = (cvFolds == i); %# get indices of test instances trainIdx = ~testIdx; %# get indices training instances %# train an SVM model over training instances svmModel = svmtrain(meas(trainIdx,:), groups(trainIdx), ... 'Autoscale',true, 'Showplot',false, 'Method','QP', ... 'BoxConstraint',2e-1, 'Kernel_Function','rbf', 'RBF_Sigma',1); %# test using test instances pred = svmclassify(svmModel, meas(testIdx,:), 'Showplot',false); %# evaluate and update performance object cp = classperf(cp, pred, testIdx); end %# get accuracy cp.CorrectRate %# get confusion matrix %# columns:actual, rows:predicted, last-row: unclassified instances cp.CountingMatrix
与输出:
ans = 0.99333 ans = 100 1 0 49 0 0
99.33%
只有一个'setosa'实例被错误归类为'non-setosa',我们获得了准确性
更新:SVM功能已移至R2013a中的统计工具箱