我有一个在机器人上运行的PID控制器,旨在使机器人转向罗盘方向.以20Hz的速率重新计算/应用PID校正.
虽然PID控制器在PD模式下运行良好(IE,积分项为零),但即使是最轻微的积分也会迫使输出不稳定,使得转向执行器被推到左或右极限.
码:
private static void DoPID(object o) { // Bring the LED up to signify frame start BoardLED.Write(true); // Get IMU heading float currentHeading = (float)RazorIMU.Yaw; // We just got the IMU heading, so we need to calculate the time from the last correction to the heading read // *immediately*. The units don't so much matter, but we are converting Ticks to milliseconds int deltaTime = (int)((LastCorrectionTime - DateTime.Now.Ticks) / 10000); // Calculate error // (let's just assume CurrentHeading really is the current GPS heading, OK?) float error = (TargetHeading - currentHeading); LCD.Lines[0].Text = "Heading: "+ currentHeading.ToString("F2"); // We calculated the error, but we need to make sure the error is set so that we will be correcting in the // direction of least work. For example, if we are flying a heading of 2 degrees and the error is a few degrees // to the left of that ( IE, somewhere around 360) there will be a large error and the rover will try to turn all // the way around to correct, when it could just turn to the right a few degrees. // In short, we are adjusting for the fact that a compass heading wraps around in a circle instead of continuing // infinity on a line if (error < -180) error = error + 360; else if (error > 180) error = error - 360; // Add the error calculated in this frame to the running total SteadyError = SteadyError + (error * deltaTime); // We need to allow for a certain amount of tolerance. // If the abs(error) is less than the set amount, we will // set error to 0, effectively telling the equation that the // rover is perfectly on course. if (MyAbs(error) < AllowError) error = 0; LCD.Lines[2].Text = "Error: " + error.ToString("F2"); // Calculate proportional term float proportional = Kp * error; // Calculate integral term float integral = Ki * (SteadyError * deltaTime); // Calculate derivative term float derivative = Kd * ((error - PrevError) / deltaTime); // Add them all together to get the correction delta // Set the steering servo to the correction Steering.Degree = 90 + proportional + integral + derivative; // We have applied the correction, so we need to *immediately* record the // absolute time for generation of deltaTime in the next frame LastCorrectionTime = DateTime.Now.Ticks; // At this point, the current PID frame is finished // ------------------------------------------------------------ // Now, we need to setup for the next PID frame and close out // The "current" error is now the previous error // (Remember, we are done with the current frame, so in // relative terms, the previous frame IS the "current" frame) PrevError = error; // Done BoardLED.Write(false); }
有谁知道为什么会发生这种情况或如何解决它?
看起来你正在将你的时基用于积分三次.错误已经是自上一个样本以来的累积误差,所以你不需要将deltaTime乘以它.所以我会将代码更改为以下内容.
SteadyError += error ;
SteadyError是误差的积分或总和.
所以积分应该是SteadyError*Ki
float integral = Ki * SteadyError;
编辑:
我已经完成了你的代码,除了上面的修复之外,我还会修复其他几个项目.
1)您不希望以毫秒为单位的增量时间.在正常的采样系统中,delta项将是1,但是对于20Hz的速率,你输入的值为50,这具有通过该因子增加Ki并且还将Kd减小50倍的效果.如果您担心抖动,则需要将增量时间转换为相对采样时间.我会用这个公式代替.
float deltaTime = (LastCorrectionTime - DateTime.Now.Ticks) / 500000.0
500000.0是每个样本的预期滴答数,对于20Hz是50ms.
2)将积分项保持在一个范围内.
if ( SteadyError > MaxSteadyError ) SteadyError = MaxSteadyError; if ( SteadyError < MinSteadyError ) SteadyError = MinSteadyError;
3)更改以下代码,以便当错误在-180左右时,您只需稍作更改就不会出错.
if (error < -270) error += 360; if (error > 270) error -= 360;
4)验证Steering.Degree正在接收正确的分辨率和符号.
5)最后你可能只是将deltaTime放在一起并按以下方式计算差分项.
float derivative = Kd * (error - PrevError);
随着所有这些你的代码变成了.
private static void DoPID(object o) { // Bring the LED up to signify frame start BoardLED.Write(true); // Get IMU heading float currentHeading = (float)RazorIMU.Yaw; // Calculate error // (let's just assume CurrentHeading really is the current GPS heading, OK?) float error = (TargetHeading - currentHeading); LCD.Lines[0].Text = "Heading: "+ currentHeading.ToString("F2"); // We calculated the error, but we need to make sure the error is set // so that we will be correcting in the // direction of least work. For example, if we are flying a heading // of 2 degrees and the error is a few degrees // to the left of that ( IE, somewhere around 360) there will be a // large error and the rover will try to turn all // the way around to correct, when it could just turn to the right // a few degrees. // In short, we are adjusting for the fact that a compass heading wraps // around in a circle instead of continuing infinity on a line if (error < -270) error += 360; if (error > 270) error -= 360; // Add the error calculated in this frame to the running total SteadyError += error; if ( SteadyError > MaxSteadyError ) SteadyError = MaxSteadyError; if ( SteadyError < MinSteadyError ) SteadyError = MinSteadyError; LCD.Lines[2].Text = "Error: " + error.ToString("F2"); // Calculate proportional term float proportional = Kp * error; // Calculate integral term float integral = Ki * SteadyError ; // Calculate derivative term float derivative = Kd * (error - PrevError) ; // Add them all together to get the correction delta // Set the steering servo to the correction Steering.Degree = 90 + proportional + integral + derivative; // At this point, the current PID frame is finished // ------------------------------------------------------------ // Now, we need to setup for the next PID frame and close out // The "current" error is now the previous error // (Remember, we are done with the current frame, so in // relative terms, the previous frame IS the "current" frame) PrevError = error; // Done BoardLED.Write(false); }
你在初始化SteadyError
(奇怪的名字......为什么不是"积分器")?如果它在启动时包含一些随机值,它可能永远不会返回到接近零(1e100 + 1 == 1e100
).
您可能会受到积分器饱和的影响,通常应该消失,但是如果它需要更长的时间来减少,而不是完成整个旋转(并再次完成积分器).如果您的系统需要,尽管有更高级的解决方案(PDF,879 kB),但这个简单的解决方案是对集成商施加限制.
是否Ki
有正确的标志?
由于它们的任意精度,我强烈反对使用浮点数作为PID参数.使用整数(可能是固定点).你将不得不进行限制检查,但它比使用浮动更加明智.