我正在处理Postgres表(称为"生命"),其中包含time_stamp,usr_id,transaction_id和lives_remaining列的记录.我需要一个查询,它将为每个usr_id提供最新的lives_remaining总数
有多个用户(不同的usr_id)
time_stamp不是唯一标识符:有时用户事件(表中逐行)将以相同的time_stamp发生.
trans_id仅在非常小的时间范围内是唯一的:随着时间的推移它会重复
remaining_lives(对于给定用户)可以随时间增加或减少
例:
time_stamp|lives_remaining|usr_id|trans_id ----------------------------------------- 07:00 | 1 | 1 | 1 09:00 | 4 | 2 | 2 10:00 | 2 | 3 | 3 10:00 | 1 | 2 | 4 11:00 | 4 | 1 | 5 11:00 | 3 | 1 | 6 13:00 | 3 | 3 | 1
因为我需要使用每个给定的usr_id的最新数据来访问该行的其他列,所以我需要一个给出如下结果的查询:
time_stamp|lives_remaining|usr_id|trans_id ----------------------------------------- 11:00 | 3 | 1 | 6 10:00 | 1 | 2 | 4 13:00 | 3 | 3 | 1
如上所述,每个usr_id都可以获得或失去生命,有时这些带时间戳的事件发生得如此紧密,以至于它们具有相同的时间戳!因此,此查询将不起作用:
SELECT b.time_stamp,b.lives_remaining,b.usr_id,b.trans_id FROM (SELECT usr_id, max(time_stamp) AS max_timestamp FROM lives GROUP BY usr_id ORDER BY usr_id) a JOIN lives b ON a.max_timestamp = b.time_stamp
相反,我需要使用time_stamp(first)和trans_id(second)来识别正确的行.然后,我还需要将该信息从子查询传递给主查询,该查询将为相应行的其他列提供数据.这是我已经开始工作的被黑客攻击的查询:
SELECT b.time_stamp,b.lives_remaining,b.usr_id,b.trans_id FROM (SELECT usr_id, max(time_stamp || '*' || trans_id) AS max_timestamp_transid FROM lives GROUP BY usr_id ORDER BY usr_id) a JOIN lives b ON a.max_timestamp_transid = b.time_stamp || '*' || b.trans_id ORDER BY b.usr_id
好的,这样可行,但我不喜欢它.它需要查询中的查询,自连接,在我看来,通过抓住MAX找到的具有最大时间戳和trans_id的行可以更简单.表"living"有数千万行要解析,所以我希望这个查询尽可能快速有效.我是RDBM和Postgres的新手,所以我知道我需要有效地使用正确的索引.我对如何优化有点迷茫.
我在这里找到了类似的讨论.我可以执行某种类型的Postgres,相当于Oracle分析函数吗?
有关访问聚合函数(如MAX)使用的相关列信息,创建索引以及创建更好查询的任何建议都将非常感谢!
PS您可以使用以下内容创建我的示例案例:
create TABLE lives (time_stamp timestamp, lives_remaining integer, usr_id integer, trans_id integer); insert into lives values ('2000-01-01 07:00', 1, 1, 1); insert into lives values ('2000-01-01 09:00', 4, 2, 2); insert into lives values ('2000-01-01 10:00', 2, 3, 3); insert into lives values ('2000-01-01 10:00', 1, 2, 4); insert into lives values ('2000-01-01 11:00', 4, 1, 5); insert into lives values ('2000-01-01 11:00', 3, 1, 6); insert into lives values ('2000-01-01 13:00', 3, 3, 1);
vladr.. 82
在具有158k伪随机行的表上(usr_id均匀分布在0到10k trans_id
之间,均匀分布在0到30之间),
通过下面的查询成本,我指的是Postgres基于成本的优化器的成本估算(使用Postgres的默认xxx_cost
值),这是对所需I/O和CPU资源的加权函数估计; 您可以通过启动PgAdminIII并在查询上运行"查询/解释(F7)"来获取此信息,并将"查询/解释选项"设置为"分析"
Quassnoy的查询有745k成本估算(!),并在1.3秒完成(假定在一个复合索引(usr_id
,trans_id
,time_stamp
))
Bill的查询成本估计为93k,并在2.9秒内完成(给定(usr_id
,trans_id
)上的复合索引)
查询#低于1具有16K成本估算,和在800ms的结束(在给定的化合物指数(usr_id
,trans_id
,time_stamp
))
查询#低于2具有14K成本估算,和在800ms的结束(在给定的化合物功能指数(usr_id
,EXTRACT(EPOCH FROM time_stamp)
,trans_id
))
这是Postgres特有的
查询#3的下方(Postgres的8.4+)具有成本估算和完成时间相当(或更好)的查询#2(在给定(一个复合索引usr_id
,time_stamp
,trans_id
)); 它的优点是lives
只扫描一次表,如果你暂时增加(如果需要)work_mem以适应内存中的排序,它将是所有查询中最快的.
以上所有时间都包括检索完整的10k行结果集.
您的目标是最小的成本估算和最短的查询执行时间,并强调估计的成本.查询执行可能显着依赖于运行时条件(例如,相关行是否已经完全缓存在内存中),而成本估算则不然.另一方面,请记住,成本估算正是估计值.
在没有负载的情况下在专用数据库上运行时获得最佳查询执行时间(例如,在开发PC上使用pgAdminIII).查询时间将根据实际机器负载/数据访问传播而在生产中变化.当一个查询稍快出现(<20%)比其它但是具有多更高的成本,这将通常是明智的选择具有较高的执行时间,但成本更低.
如果您希望在运行查询时生产机器上没有内存竞争(例如,RDBMS缓存和文件系统缓存不会被并发查询和/或文件系统活动破坏)那么您获得的查询时间独立的(例如开发PC上的pgAdminIII)模式将具有代表性.如果生产系统存在争用,则查询时间将与估计的成本比率成比例地降低,因为具有较低成本的查询不依赖于高速缓存,而具有较高成本的查询将反复重新访问相同的数据(触发)在没有稳定缓存的情况下额外的I/O),例如:
cost | time (dedicated machine) | time (under load) | -------------------+--------------------------+-----------------------+ some query A: 5k | (all data cached) 900ms | (less i/o) 1000ms | some query B: 50k | (all data cached) 900ms | (lots of i/o) 10000ms |
ANALYZE lives
创建必要的索引后不要忘记运行一次.
查询#1
-- incrementally narrow down the result set via inner joins -- the CBO may elect to perform one full index scan combined -- with cascading index lookups, or as hash aggregates terminated -- by one nested index lookup into lives - on my machine -- the latter query plan was selected given my memory settings and -- histogram SELECT l1.* FROM lives AS l1 INNER JOIN ( SELECT usr_id, MAX(time_stamp) AS time_stamp_max FROM lives GROUP BY usr_id ) AS l2 ON l1.usr_id = l2.usr_id AND l1.time_stamp = l2.time_stamp_max INNER JOIN ( SELECT usr_id, time_stamp, MAX(trans_id) AS trans_max FROM lives GROUP BY usr_id, time_stamp ) AS l3 ON l1.usr_id = l3.usr_id AND l1.time_stamp = l3.time_stamp AND l1.trans_id = l3.trans_max
查询#2
-- cheat to obtain a max of the (time_stamp, trans_id) tuple in one pass -- this results in a single table scan and one nested index lookup into lives, -- by far the least I/O intensive operation even in case of great scarcity -- of memory (least reliant on cache for the best performance) SELECT l1.* FROM lives AS l1 INNER JOIN ( SELECT usr_id, MAX(ARRAY[EXTRACT(EPOCH FROM time_stamp),trans_id]) AS compound_time_stamp FROM lives GROUP BY usr_id ) AS l2 ON l1.usr_id = l2.usr_id AND EXTRACT(EPOCH FROM l1.time_stamp) = l2.compound_time_stamp[1] AND l1.trans_id = l2.compound_time_stamp[2]
2013/01/29更新
最后,从版本8.4开始,Postgres支持窗口函数,这意味着您可以编写简单有效的内容:
查询#3
-- use Window Functions -- performs a SINGLE scan of the table SELECT DISTINCT ON (usr_id) last_value(time_stamp) OVER wnd, last_value(lives_remaining) OVER wnd, usr_id, last_value(trans_id) OVER wnd FROM lives WINDOW wnd AS ( PARTITION BY usr_id ORDER BY time_stamp, trans_id ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING );
Marco.. 64
我会建议一个基于DISTINCT ON
(见文档)的干净版本:
SELECT DISTINCT ON (usr_id) time_stamp, lives_remaining, usr_id, trans_id FROM lives ORDER BY usr_id, time_stamp DESC, trans_id DESC;
这是一个非常简短而合理的答案.也有很好的参考!这应该是公认的答案. (6认同)
Bill Karwin.. 7
这是另一种方法,碰巧没有使用相关的子查询或GROUP BY.我不是PostgreSQL性能调优的专家,所以我建议你尝试这个和其他人给出的解决方案,看看哪个更适合你.
SELECT l1.* FROM lives l1 LEFT OUTER JOIN lives l2 ON (l1.usr_id = l2.usr_id AND (l1.time_stamp < l2.time_stamp OR (l1.time_stamp = l2.time_stamp AND l1.trans_id < l2.trans_id))) WHERE l2.usr_id IS NULL ORDER BY l1.usr_id;
我假设trans_id
至少在任何给定的值上都是唯一的time_stamp
.
在具有158k伪随机行的表上(usr_id均匀分布在0到10k trans_id
之间,均匀分布在0到30之间),
通过下面的查询成本,我指的是Postgres基于成本的优化器的成本估算(使用Postgres的默认xxx_cost
值),这是对所需I/O和CPU资源的加权函数估计; 您可以通过启动PgAdminIII并在查询上运行"查询/解释(F7)"来获取此信息,并将"查询/解释选项"设置为"分析"
Quassnoy的查询有745k成本估算(!),并在1.3秒完成(假定在一个复合索引(usr_id
,trans_id
,time_stamp
))
Bill的查询成本估计为93k,并在2.9秒内完成(给定(usr_id
,trans_id
)上的复合索引)
查询#低于1具有16K成本估算,和在800ms的结束(在给定的化合物指数(usr_id
,trans_id
,time_stamp
))
查询#低于2具有14K成本估算,和在800ms的结束(在给定的化合物功能指数(usr_id
,EXTRACT(EPOCH FROM time_stamp)
,trans_id
))
这是Postgres特有的
查询#3的下方(Postgres的8.4+)具有成本估算和完成时间相当(或更好)的查询#2(在给定(一个复合索引usr_id
,time_stamp
,trans_id
)); 它的优点是lives
只扫描一次表,如果你暂时增加(如果需要)work_mem以适应内存中的排序,它将是所有查询中最快的.
以上所有时间都包括检索完整的10k行结果集.
您的目标是最小的成本估算和最短的查询执行时间,并强调估计的成本.查询执行可能显着依赖于运行时条件(例如,相关行是否已经完全缓存在内存中),而成本估算则不然.另一方面,请记住,成本估算正是估计值.
在没有负载的情况下在专用数据库上运行时获得最佳查询执行时间(例如,在开发PC上使用pgAdminIII).查询时间将根据实际机器负载/数据访问传播而在生产中变化.当一个查询稍快出现(<20%)比其它但是具有多更高的成本,这将通常是明智的选择具有较高的执行时间,但成本更低.
如果您希望在运行查询时生产机器上没有内存竞争(例如,RDBMS缓存和文件系统缓存不会被并发查询和/或文件系统活动破坏)那么您获得的查询时间独立的(例如开发PC上的pgAdminIII)模式将具有代表性.如果生产系统存在争用,则查询时间将与估计的成本比率成比例地降低,因为具有较低成本的查询不依赖于高速缓存,而具有较高成本的查询将反复重新访问相同的数据(触发)在没有稳定缓存的情况下额外的I/O),例如:
cost | time (dedicated machine) | time (under load) | -------------------+--------------------------+-----------------------+ some query A: 5k | (all data cached) 900ms | (less i/o) 1000ms | some query B: 50k | (all data cached) 900ms | (lots of i/o) 10000ms |
ANALYZE lives
创建必要的索引后不要忘记运行一次.
查询#1
-- incrementally narrow down the result set via inner joins -- the CBO may elect to perform one full index scan combined -- with cascading index lookups, or as hash aggregates terminated -- by one nested index lookup into lives - on my machine -- the latter query plan was selected given my memory settings and -- histogram SELECT l1.* FROM lives AS l1 INNER JOIN ( SELECT usr_id, MAX(time_stamp) AS time_stamp_max FROM lives GROUP BY usr_id ) AS l2 ON l1.usr_id = l2.usr_id AND l1.time_stamp = l2.time_stamp_max INNER JOIN ( SELECT usr_id, time_stamp, MAX(trans_id) AS trans_max FROM lives GROUP BY usr_id, time_stamp ) AS l3 ON l1.usr_id = l3.usr_id AND l1.time_stamp = l3.time_stamp AND l1.trans_id = l3.trans_max
查询#2
-- cheat to obtain a max of the (time_stamp, trans_id) tuple in one pass -- this results in a single table scan and one nested index lookup into lives, -- by far the least I/O intensive operation even in case of great scarcity -- of memory (least reliant on cache for the best performance) SELECT l1.* FROM lives AS l1 INNER JOIN ( SELECT usr_id, MAX(ARRAY[EXTRACT(EPOCH FROM time_stamp),trans_id]) AS compound_time_stamp FROM lives GROUP BY usr_id ) AS l2 ON l1.usr_id = l2.usr_id AND EXTRACT(EPOCH FROM l1.time_stamp) = l2.compound_time_stamp[1] AND l1.trans_id = l2.compound_time_stamp[2]
2013/01/29更新
最后,从版本8.4开始,Postgres支持窗口函数,这意味着您可以编写简单有效的内容:
查询#3
-- use Window Functions -- performs a SINGLE scan of the table SELECT DISTINCT ON (usr_id) last_value(time_stamp) OVER wnd, last_value(lives_remaining) OVER wnd, usr_id, last_value(trans_id) OVER wnd FROM lives WINDOW wnd AS ( PARTITION BY usr_id ORDER BY time_stamp, trans_id ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING );
我会建议一个基于DISTINCT ON
(见文档)的干净版本:
SELECT DISTINCT ON (usr_id) time_stamp, lives_remaining, usr_id, trans_id FROM lives ORDER BY usr_id, time_stamp DESC, trans_id DESC;
这是另一种方法,碰巧没有使用相关的子查询或GROUP BY.我不是PostgreSQL性能调优的专家,所以我建议你尝试这个和其他人给出的解决方案,看看哪个更适合你.
SELECT l1.* FROM lives l1 LEFT OUTER JOIN lives l2 ON (l1.usr_id = l2.usr_id AND (l1.time_stamp < l2.time_stamp OR (l1.time_stamp = l2.time_stamp AND l1.trans_id < l2.trans_id))) WHERE l2.usr_id IS NULL ORDER BY l1.usr_id;
我假设trans_id
至少在任何给定的值上都是唯一的time_stamp
.