我正在使用Spark 1.3
# Read from text file, parse it and then do some basic filtering to get data1 data1.registerTempTable('data1') # Read from text file, parse it and then do some basic filtering to get data1 data2.registerTempTable('data2') # Perform join data_joined = data1.join(data2, data1.id == data2.id);
我的数据非常偏斜,data2(几KB)<< data1(GB的10s),性能非常糟糕.我正在阅读有关广播加入的内容,但不确定如何使用Python API执行相同操作.
Spark 1.3不支持使用DataFrame进行广播连接.在Spark> = 1.5.0中,您可以使用broadcast
函数来应用广播连接:
from pyspark.sql.functions import broadcast data1.join(broadcast(data2), data1.id == data2.id)
对于旧版本,唯一的选择是转换为RDD并应用与其他语言相同的逻辑.大概是这样的:
from pyspark.sql import Row from pyspark.sql.types import StructType # Create a dictionary where keys are join keys # and values are lists of rows data2_bd = sc.broadcast( data2.map(lambda r: (r.id, r)).groupByKey().collectAsMap()) # Define a new row with fields from both DFs output_row = Row(*data1.columns + data2.columns) # And an output schema output_schema = StructType(data1.schema.fields + data2.schema.fields) # Given row x, extract a list of corresponding rows from broadcast # and output a list of merged rows def gen_rows(x): return [output_row(*x + y) for y in data2_bd.value.get(x.id, [])] # flatMap and create a new data frame joined = data1.rdd.flatMap(lambda row: gen_rows(row)).toDF(output_schema)