当前位置:  开发笔记 > 编程语言 > 正文

如何使用分类的单热标签进行Keras培训?

如何解决《如何使用分类的单热标签进行Keras培训?》经验,为你挑选了1个好方法。

我的输入看起来像这样:

[
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
...]

形状(1, num_samples, num_features)和标签看起来像这样:

[
[0, 1]
[1, 0]
[1, 0]
...]

形状(1, num_samples, 2).

但是,当我尝试运行以下Keras代码时,我收到此错误: ValueError: Error when checking model target: expected dense_1 to have 2 dimensions, but got array with shape (1, 8038, 2).从我所读到的,这似乎源于我的标签是2D,而不仅仅是整数.这是否正确,如果是这样,我如何使用Keras的单热标签?

这是代码:

num_features = 463
trX = np.random(8038, num_features)
trY = # one-hot array of shape (8038, 2) as described above

def keras_builder():  #generator to build the inputs
    while(1):
        x = np.reshape(trX, (1,) + np.shape(trX))
        y = np.reshape(trY, (1,) + np.shape(trY))
        print(np.shape(x)) # (1, 8038, 463)
        print(np.shape(y)) # (1, 8038, 2)
        yield x, y

model = Sequential()
model.add(LSTM(100, input_dim = num_features))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit_generator(keras_builder(), samples_per_epoch = 1, nb_epoch=3, verbose = 2, nb_worker = 1)

哪个迅速抛出上面的错误:

Traceback (most recent call last):
  File "file.py", line 35, in 
    model.fit_generator(keras_builder(), samples_per_epoch = 1, nb_epoch=3, verbose = 2, nb_worker = 1)
  ...
ValueError: Error when checking model target: expected dense_1 to have 2 dimensions, but got array with shape (1, 8038, 2)

谢谢!



1> nemo..:

有很多东西没有加起来.

我假设您正在尝试解决顺序分类任务,即您的数据形状为(, , ).

在批处理生成器中,您创建一个批处理,其中包含一个长度为8038的序列和每个序列元素的463个特征.您创建一个匹配的Y批次进行比较,由一个序列组成,其中包含8038个元素,每个元素的大小为2.

您的问题是Y与最后一层的输出不匹配.你Y是三维的,而模型的输出只是二维的:Y.shape = (1, 8038, 2)不匹配dense_1.shape = (1,1).这解释了您收到的错误消息.

解决方案:您需要return_sequences=True在LSTM层中启用返回序列而不是仅返回最后一个元素(有效地删除时间维度).这将给出(1, 8038, 100)LSTM层的输出形状.由于Dense图层无法处理顺序数据,因此需要将其单独应用于每个序列元素,这是通过将其包装在TimeDistributed包装器中完成的.然后,这会为您的模型提供输出形状(1, 8038, 1).

您的模型应如下所示:

from keras.layers.wrappers import TimeDistributed

model = Sequential()
model.add(LSTM(100, input_dim=num_features, return_sequences=True))
model.add(TimeDistributed(Dense(1, activation='sigmoid')))

在检查模型摘要时可以很容易地发现这一点:

print(model.summary()) 

推荐阅读
yzh148448
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有