我有numpy 2D数组定义的嘈杂曲线:
如您所见,它具有第一个平坦段,然后是上升,峰值和衰减阶段.我需要找到上升阶段的起点,这里用红点标记.我怎么在python中做到这一点?
如果数据看起来与示例图中的数据类似,则可以估计背景及其噪声级别,并应用一些阈值来提取高于背景的数据部分.示例如下:
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np from scipy.ndimage import gaussian_filter def generate_fake_data(): """Generate data that looks like an example given.""" xs = np.arange(0, 25, 0.05) ys = - 20 * 1./(1 + np.exp(-(xs - 5.)/0.3)) m = xs > 7. ys[m] = -20.*np.exp(-(xs - 7.)[m] / 5.) # add noise ys += np.random.normal(0, 0.2, xs.size) return xs, ys def main(): xs, ys = generate_fake_data() # smooth out noise smoothed = gaussian_filter(ys, 3.) # find the point where the signal goes above the background noise # level (assumed to be zero here). base = 0. std = (ys[xs < 3] - base).std() m = smoothed < (base - 3. * std) x0 = xs[m][0] y0 = ys[m][0] plt.plot(xs, ys, '.') plt.plot(xs, smoothed, '-') plt.plot(x0, y0, 'o') plt.show() if __name__ == '__main__': main()
好吧,我计算了小dt沿曲线的局部微分,导数曲线的极值很好地指出了"拐点".我想,我会解决这个问题.