当前位置:  开发笔记 > 编程语言 > 正文

如何在groupBy之后将值聚合到集合中?

如何解决《如何在groupBy之后将值聚合到集合中?》经验,为你挑选了2个好方法。

我有一个带有架构的数据帧:

[visitorId: string, trackingIds: array, emailIds: array]

正在寻找一种方法来分组(或者可能汇总?)由visitorid组成的数据帧,其中的trackingIds和emailIds列将一起追加.所以例如,如果我的初始df看起来像:

visitorId   |trackingIds|emailIds
+-----------+------------+--------
|a158|      [666b]      |    [12]
|7g21|      [c0b5]      |    [45]
|7g21|      [c0b4]      |    [87]
|a158|      [666b, 777c]|    []

我希望我的输出df看起来像这样

visitorId   |trackingIds|emailIds
+-----------+------------+--------
|a158|      [666b,666b,777c]|      [12,'']
|7g21|      [c0b5,c0b4]     |      [45, 87]

试图使用groupByagg运营商但没有太多运气.



1> zero323..:

Spark> = 2.4

您可以flatten udf使用内置功能进行更换flatten

import org.apache.spark.sql.functions.flatten

剩下的就是原样.

Spark> = 2.0,<2.4

它可能但非常昂贵.使用您提供的数据:

case class Record(
    visitorId: String, trackingIds: Array[String], emailIds: Array[String])

val df = Seq(
  Record("a158", Array("666b"), Array("12")),
  Record("7g21", Array("c0b5"), Array("45")),
  Record("7g21", Array("c0b4"), Array("87")),
  Record("a158", Array("666b",  "777c"), Array.empty[String])).toDF

和辅助函数:

import org.apache.spark.sql.functions.udf

val flatten = udf((xs: Seq[Seq[String]]) => xs.flatten)

我们可以用占位符填充空白:

import org.apache.spark.sql.functions.{array, lit, when}

val dfWithPlaceholders = df.withColumn(
  "emailIds", 
  when(size($"emailIds") === 0, array(lit(""))).otherwise($"emailIds"))

collect_lists并且flatten:

import org.apache.spark.sql.functions.{array, collect_list}

val emailIds = flatten(collect_list($"emailIds")).alias("emailIds")
val trackingIds = flatten(collect_list($"trackingIds")).alias("trackingIds")

df
  .groupBy($"visitorId")
  .agg(trackingIds, emailIds)

// +---------+------------------+--------+
// |visitorId|       trackingIds|emailIds|
// +---------+------------------+--------+
// |     a158|[666b, 666b, 777c]|  [12, ]|
// |     7g21|      [c0b5, c0b4]|[45, 87]|
// +---------+------------------+--------+

使用静态类型Dataset:

df.as[Record]
  .groupByKey(_.visitorId)
  .mapGroups { case (key, vs) => 
    vs.map(v => (v.trackingIds, v.emailIds)).toArray.unzip match {
      case (trackingIds, emailIds) => 
        Record(key, trackingIds.flatten, emailIds.flatten)
  }}

// +---------+------------------+--------+
// |visitorId|       trackingIds|emailIds|
// +---------+------------------+--------+
// |     a158|[666b, 666b, 777c]|  [12, ]|
// |     7g21|      [c0b5, c0b4]|[45, 87]|
// +---------+------------------+--------+

Spark 1.x

您可以转换为RDD和组

import org.apache.spark.sql.Row

dfWithPlaceholders.rdd
  .map {
     case Row(id: String, 
       trcks: Seq[String @ unchecked],
       emails: Seq[String @ unchecked]) => (id, (trcks, emails))
  }
  .groupByKey
  .map {case (key, vs) => vs.toArray.unzip match {
    case (trackingIds, emailIds) => 
      Record(key, trackingIds.flatten, emailIds.flatten)
  }}
  .toDF

// +---------+------------------+--------+
// |visitorId|       trackingIds|emailIds|
// +---------+------------------+--------+
// |     7g21|      [c0b5, c0b4]|[45, 87]|
// |     a158|[666b, 666b, 777c]|  [12, ]|
// +---------+------------------+--------+



2> Jacek Laskow..:

@ zero323的答案非常完整,但Spark为我们提供了更大的灵活性.以下解决方案怎么样?

import org.apache.spark.sql.functions._
inventory
  .select($"*", explode($"trackingIds") as "tracking_id")
  .select($"*", explode($"emailIds") as "email_id")
  .groupBy("visitorId")
  .agg(
    collect_list("tracking_id") as "trackingIds",
    collect_list("email_id") as "emailIds")

然而,这留下了所有空集合(所以有一些改进的余地:))

推荐阅读
我我檬檬我我186
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有