我将图片的某些像素标记为前景,其余部分尚未标记.我想使用SVM和标记像素的属性(如颜色作为SVM输入)将剩余像素标记为背景或前景.一类作为输入可能吗?或者我需要一些标记为背景的像素(两级输入)?
提前致谢.
编辑:我找到了
http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
和
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
对于一流的SVM,但是我不知道如何在matlab中使用它.
README
在官方软件包中包含的文件中描述了在Matlab中设置LIBSVM ,可以在此处下载
为Matlab版本安装LIBSVM后,可以使用以下方法训练SVM模型:
matlab> model = svmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']);
解释(取自README
)
-training_label_vector: An m by 1 vector of training labels (type must be double). -training_instance_matrix: An m by n matrix of m training instances with n features. It can be dense or sparse (type must be double). -libsvm_options: A string of training options in the same format as that of LIBSVM.
培训选项包括:
-s svm_type : set type of SVM (default 0) 0 -- C-SVC (multi-class classification) 1 -- nu-SVC (multi-class classification) 2 -- one-class SVM 3 -- epsilon-SVR (regression) 4 -- nu-SVR (regression) -t kernel_type : set type of kernel function (default 2) 0 -- linear: u'*v 1 -- polynomial: (gamma*u'*v + coef0)^degree 2 -- radial basis function: exp(-gamma*|u-v|^2) 3 -- sigmoid: tanh(gamma*u'*v + coef0) 4 -- precomputed kernel (kernel values in training_set_file) -d degree : set degree in kernel function (default 3) -g gamma : set gamma in kernel function (default 1/num_features) -r coef0 : set coef0 in kernel function (default 0) -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) -m cachesize : set cache memory size in MB (default 100) -e epsilon : set tolerance of termination criterion (default 0.001) -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) -v n : n-fold cross validation mode -q : quiet mode (no outputs)
如果您想训练One-Class-SVM(例如,用于异常检测),您必须选择-s 2
作为选项.
此外,参数nu
可能在调整训练的SVM以及适合kernel parameters
所选内核类型(例如通过网格搜索)时很有用.
要通过LIBSVM训练一类SVM,您应该只提供属于代表不足的类的数据.
然而对于你的问题(因为你不打算进行某种异常检测并且特征/样本并不罕见),你应该选择正常的两级SVM.