如何在Python中创建两个装饰器来执行以下操作?
@makebold @makeitalic def say(): return "Hello"
...应该返回:
"Hello"
我不是试图HTML
在一个真实的应用程序中这样做 - 只是试图了解装饰器和装饰器链是如何工作的.
如果您没有详细解释,请参阅Paolo Bergantino的答案.
装饰师基础知识要理解装饰器,首先必须了解函数是Python中的对象.这具有重要的后果.让我们看一个简单的例子:
def shout(word="yes"): return word.capitalize()+"!" print(shout()) # outputs : 'Yes!' # As an object, you can assign the function to a variable like any other object scream = shout # Notice we don't use parentheses: we are not calling the function, # we are putting the function "shout" into the variable "scream". # It means you can then call "shout" from "scream": print(scream()) # outputs : 'Yes!' # More than that, it means you can remove the old name 'shout', # and the function will still be accessible from 'scream' del shout try: print(shout()) except NameError as e: print(e) #outputs: "name 'shout' is not defined" print(scream()) # outputs: 'Yes!'
记住这一点.我们很快就会回过头来.
Python函数的另一个有趣的属性是它们可以在另一个函数中定义!
def talk(): # You can define a function on the fly in "talk" ... def whisper(word="yes"): return word.lower()+"..." # ... and use it right away! print(whisper()) # You call "talk", that defines "whisper" EVERY TIME you call it, then # "whisper" is called in "talk". talk() # outputs: # "yes..." # But "whisper" DOES NOT EXIST outside "talk": try: print(whisper()) except NameError as e: print(e) #outputs : "name 'whisper' is not defined"* #Python's functions are objects
好的,还在吗?现在有趣的部分......
你已经看到函数是对象.因此,功能:
可以分配给变量
可以在另一个函数中定义
这意味着一个函数可以是return
另一个函数.
def getTalk(kind="shout"): # We define functions on the fly def shout(word="yes"): return word.capitalize()+"!" def whisper(word="yes") : return word.lower()+"..."; # Then we return one of them if kind == "shout": # We don't use "()", we are not calling the function, # we are returning the function object return shout else: return whisper # How do you use this strange beast? # Get the function and assign it to a variable talk = getTalk() # You can see that "talk" is here a function object: print(talk) #outputs :# The object is the one returned by the function: print(talk()) #outputs : Yes! # And you can even use it directly if you feel wild: print(getTalk("whisper")()) #outputs : yes...
还有更多!
如果你可以使用return
一个函数,你可以传递一个作为参数:
def doSomethingBefore(func): print("I do something before then I call the function you gave me") print(func()) doSomethingBefore(scream) #outputs: #I do something before then I call the function you gave me #Yes!
好吧,你只需要了解装饰器所需的一切.你看,装饰器是"包装器",这意味着它们允许你在它们装饰的函数之前和之后执行代码而不修改函数本身.
你是如何手动完成的:
# A decorator is a function that expects ANOTHER function as parameter def my_shiny_new_decorator(a_function_to_decorate): # Inside, the decorator defines a function on the fly: the wrapper. # This function is going to be wrapped around the original function # so it can execute code before and after it. def the_wrapper_around_the_original_function(): # Put here the code you want to be executed BEFORE the original function is called print("Before the function runs") # Call the function here (using parentheses) a_function_to_decorate() # Put here the code you want to be executed AFTER the original function is called print("After the function runs") # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED. # We return the wrapper function we have just created. # The wrapper contains the function and the code to execute before and after. It’s ready to use! return the_wrapper_around_the_original_function # Now imagine you create a function you don't want to ever touch again. def a_stand_alone_function(): print("I am a stand alone function, don't you dare modify me") a_stand_alone_function() #outputs: I am a stand alone function, don't you dare modify me # Well, you can decorate it to extend its behavior. # Just pass it to the decorator, it will wrap it dynamically in # any code you want and return you a new function ready to be used: a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function) a_stand_alone_function_decorated() #outputs: #Before the function runs #I am a stand alone function, don't you dare modify me #After the function runs
现在,您可能希望每次打电话时a_stand_alone_function
,a_stand_alone_function_decorated
都会调用它.这很简单,只需a_stand_alone_function
使用返回的函数覆盖my_shiny_new_decorator
:
a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function) a_stand_alone_function() #outputs: #Before the function runs #I am a stand alone function, don't you dare modify me #After the function runs # That’s EXACTLY what decorators do!
上一个示例,使用装饰器语法:
@my_shiny_new_decorator def another_stand_alone_function(): print("Leave me alone") another_stand_alone_function() #outputs: #Before the function runs #Leave me alone #After the function runs
是的,就是这样,就这么简单.@decorator
只是一个快捷方式:
another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)
装饰器只是装饰器设计模式的pythonic变体.Python中嵌入了几种经典设计模式以简化开发(如迭代器).
当然,你可以积累装饰器:
def bread(func): def wrapper(): print("''''''\>") func() print("<\______/>") return wrapper def ingredients(func): def wrapper(): print("#tomatoes#") func() print("~salad~") return wrapper def sandwich(food="--ham--"): print(food) sandwich() #outputs: --ham-- sandwich = bread(ingredients(sandwich)) sandwich() #outputs: #''''''\> # #tomatoes# # --ham-- # ~salad~ #<\______/>
使用Python装饰器语法:
@bread @ingredients def sandwich(food="--ham--"): print(food) sandwich() #outputs: #''''''\> # #tomatoes# # --ham-- # ~salad~ #<\______/>
您设置装饰器MATTERS的顺序:
@ingredients @bread def strange_sandwich(food="--ham--"): print(food) strange_sandwich() #outputs: ##tomatoes# #''''''\> # --ham-- #<\______/> # ~salad~
总之,您可以轻松地看到如何回答这个问题:
# The decorator to make it bold def makebold(fn): # The new function the decorator returns def wrapper(): # Insertion of some code before and after return "" + fn() + "" return wrapper # The decorator to make it italic def makeitalic(fn): # The new function the decorator returns def wrapper(): # Insertion of some code before and after return "" + fn() + "" return wrapper @makebold @makeitalic def say(): return "hello" print(say()) #outputs: hello # This is the exact equivalent to def say(): return "hello" say = makebold(makeitalic(say)) print(say()) #outputs: hello
你现在可以离开快乐,或者更多地燃烧你的大脑并看到装饰器的高级用途.
# It’s not black magic, you just have to let the wrapper # pass the argument: def a_decorator_passing_arguments(function_to_decorate): def a_wrapper_accepting_arguments(arg1, arg2): print("I got args! Look: {0}, {1}".format(arg1, arg2)) function_to_decorate(arg1, arg2) return a_wrapper_accepting_arguments # Since when you are calling the function returned by the decorator, you are # calling the wrapper, passing arguments to the wrapper will let it pass them to # the decorated function @a_decorator_passing_arguments def print_full_name(first_name, last_name): print("My name is {0} {1}".format(first_name, last_name)) print_full_name("Peter", "Venkman") # outputs: #I got args! Look: Peter Venkman #My name is Peter Venkman
关于Python的一个好消息是方法和函数真的是一样的.唯一的区别是方法期望它们的第一个参数是对当前object(self
)的引用.
这意味着您可以以相同的方式为方法构建装饰器!请记住要考虑self
到:
def method_friendly_decorator(method_to_decorate): def wrapper(self, lie): lie = lie - 3 # very friendly, decrease age even more :-) return method_to_decorate(self, lie) return wrapper class Lucy(object): def __init__(self): self.age = 32 @method_friendly_decorator def sayYourAge(self, lie): print("I am {0}, what did you think?".format(self.age + lie)) l = Lucy() l.sayYourAge(-3) #outputs: I am 26, what did you think?
If you’re making general-purpose decorator--one you’ll apply to any function or method, no matter its arguments--then just use *args, **kwargs
:
def a_decorator_passing_arbitrary_arguments(function_to_decorate): # The wrapper accepts any arguments def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs): print("Do I have args?:") print(args) print(kwargs) # Then you unpack the arguments, here *args, **kwargs # If you are not familiar with unpacking, check: # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/ function_to_decorate(*args, **kwargs) return a_wrapper_accepting_arbitrary_arguments @a_decorator_passing_arbitrary_arguments def function_with_no_argument(): print("Python is cool, no argument here.") function_with_no_argument() #outputs #Do I have args?: #() #{} #Python is cool, no argument here. @a_decorator_passing_arbitrary_arguments def function_with_arguments(a, b, c): print(a, b, c) function_with_arguments(1,2,3) #outputs #Do I have args?: #(1, 2, 3) #{} #1 2 3 @a_decorator_passing_arbitrary_arguments def function_with_named_arguments(a, b, c, platypus="Why not ?"): print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus)) function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!") #outputs #Do I have args ? : #('Bill', 'Linus', 'Steve') #{'platypus': 'Indeed!'} #Do Bill, Linus and Steve like platypus? Indeed! class Mary(object): def __init__(self): self.age = 31 @a_decorator_passing_arbitrary_arguments def sayYourAge(self, lie=-3): # You can now add a default value print("I am {0}, what did you think?".format(self.age + lie)) m = Mary() m.sayYourAge() #outputs # Do I have args?: #(<__main__.Mary object at 0xb7d303ac>,) #{} #I am 28, what did you think?
Great, now what would you say about passing arguments to the decorator itself?
This can get somewhat twisted, since a decorator must accept a function as an argument. Therefore, you cannot pass the decorated function’s arguments directly to the decorator.
Before rushing to the solution, let’s write a little reminder:
# Decorators are ORDINARY functions def my_decorator(func): print("I am an ordinary function") def wrapper(): print("I am function returned by the decorator") func() return wrapper # Therefore, you can call it without any "@" def lazy_function(): print("zzzzzzzz") decorated_function = my_decorator(lazy_function) #outputs: I am an ordinary function # It outputs "I am an ordinary function", because that’s just what you do: # calling a function. Nothing magic. @my_decorator def lazy_function(): print("zzzzzzzz") #outputs: I am an ordinary function
It’s exactly the same. "my_decorator
" is called. So when you @my_decorator
, you are telling Python to call the function 'labelled by the variable "my_decorator
"'.
This is important! The label you give can point directly to the decorator—or not.
Let’s get evil. ?
def decorator_maker(): print("I make decorators! I am executed only once: " "when you make me create a decorator.") def my_decorator(func): print("I am a decorator! I am executed only when you decorate a function.") def wrapped(): print("I am the wrapper around the decorated function. " "I am called when you call the decorated function. " "As the wrapper, I return the RESULT of the decorated function.") return func() print("As the decorator, I return the wrapped function.") return wrapped print("As a decorator maker, I return a decorator") return my_decorator # Let’s create a decorator. It’s just a new function after all. new_decorator = decorator_maker() #outputs: #I make decorators! I am executed only once: when you make me create a decorator. #As a decorator maker, I return a decorator # Then we decorate the function def decorated_function(): print("I am the decorated function.") decorated_function = new_decorator(decorated_function) #outputs: #I am a decorator! I am executed only when you decorate a function. #As the decorator, I return the wrapped function # Let’s call the function: decorated_function() #outputs: #I am the wrapper around the decorated function. I am called when you call the decorated function. #As the wrapper, I return the RESULT of the decorated function. #I am the decorated function.
No surprise here.
Let’s do EXACTLY the same thing, but skip all the pesky intermediate variables:
def decorated_function(): print("I am the decorated function.") decorated_function = decorator_maker()(decorated_function) #outputs: #I make decorators! I am executed only once: when you make me create a decorator. #As a decorator maker, I return a decorator #I am a decorator! I am executed only when you decorate a function. #As the decorator, I return the wrapped function. # Finally: decorated_function() #outputs: #I am the wrapper around the decorated function. I am called when you call the decorated function. #As the wrapper, I return the RESULT of the decorated function. #I am the decorated function.
Let’s make it even shorter:
@decorator_maker() def decorated_function(): print("I am the decorated function.") #outputs: #I make decorators! I am executed only once: when you make me create a decorator. #As a decorator maker, I return a decorator #I am a decorator! I am executed only when you decorate a function. #As the decorator, I return the wrapped function. #Eventually: decorated_function() #outputs: #I am the wrapper around the decorated function. I am called when you call the decorated function. #As the wrapper, I return the RESULT of the decorated function. #I am the decorated function.
Hey, did you see that? We used a function call with the "@
" syntax! :-)
So, back to decorators with arguments. If we can use functions to generate the decorator on the fly, we can pass arguments to that function, right?
def decorator_maker_with_arguments(decorator_arg1, decorator_arg2): print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2)) def my_decorator(func): # The ability to pass arguments here is a gift from closures. # If you are not comfortable with closures, you can assume it’s ok, # or read: /sf/ask/17360801/ print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2)) # Don't confuse decorator arguments and function arguments! def wrapped(function_arg1, function_arg2) : print("I am the wrapper around the decorated function.\n" "I can access all the variables\n" "\t- from the decorator: {0} {1}\n" "\t- from the function call: {2} {3}\n" "Then I can pass them to the decorated function" .format(decorator_arg1, decorator_arg2, function_arg1, function_arg2)) return func(function_arg1, function_arg2) return wrapped return my_decorator @decorator_maker_with_arguments("Leonard", "Sheldon") def decorated_function_with_arguments(function_arg1, function_arg2): print("I am the decorated function and only knows about my arguments: {0}" " {1}".format(function_arg1, function_arg2)) decorated_function_with_arguments("Rajesh", "Howard") #outputs: #I make decorators! And I accept arguments: Leonard Sheldon #I am the decorator. Somehow you passed me arguments: Leonard Sheldon #I am the wrapper around the decorated function. #I can access all the variables # - from the decorator: Leonard Sheldon # - from the function call: Rajesh Howard #Then I can pass them to the decorated function #I am the decorated function and only knows about my arguments: Rajesh Howard
Here it is: a decorator with arguments. Arguments can be set as variable:
c1 = "Penny" c2 = "Leslie" @decorator_maker_with_arguments("Leonard", c1) def decorated_function_with_arguments(function_arg1, function_arg2): print("I am the decorated function and only knows about my arguments:" " {0} {1}".format(function_arg1, function_arg2)) decorated_function_with_arguments(c2, "Howard") #outputs: #I make decorators! And I accept arguments: Leonard Penny #I am the decorator. Somehow you passed me arguments: Leonard Penny #I am the wrapper around the decorated function. #I can access all the variables # - from the decorator: Leonard Penny # - from the function call: Leslie Howard #Then I can pass them to the decorated function #I am the decorated function and only know about my arguments: Leslie Howard
As you can see, you can pass arguments to the decorator like any function using this trick. You can even use *args, **kwargs
if you wish. But remember decorators are called only once. Just when Python imports the script. You can't dynamically set the arguments afterwards. When you do "import x", the function is already decorated, so you can't
change anything.
Okay, as a bonus, I'll give you a snippet to make any decorator accept generically any argument. After all, in order to accept arguments, we created our decorator using another function.
We wrapped the decorator.
Anything else we saw recently that wrapped function?
Oh yes, decorators!
Let’s have some fun and write a decorator for the decorators:
def decorator_with_args(decorator_to_enhance): """ This function is supposed to be used as a decorator. It must decorate an other function, that is intended to be used as a decorator. Take a cup of coffee. It will allow any decorator to accept an arbitrary number of arguments, saving you the headache to remember how to do that every time. """ # We use the same trick we did to pass arguments def decorator_maker(*args, **kwargs): # We create on the fly a decorator that accepts only a function # but keeps the passed arguments from the maker. def decorator_wrapper(func): # We return the result of the original decorator, which, after all, # IS JUST AN ORDINARY FUNCTION (which returns a function). # Only pitfall: the decorator must have this specific signature or it won't work: return decorator_to_enhance(func, *args, **kwargs) return decorator_wrapper return decorator_maker
It can be used as follows:
# You create the function you will use as a decorator. And stick a decorator on it :-) # Don't forget, the signature is "decorator(func, *args, **kwargs)" @decorator_with_args def decorated_decorator(func, *args, **kwargs): def wrapper(function_arg1, function_arg2): print("Decorated with {0} {1}".format(args, kwargs)) return func(function_arg1, function_arg2) return wrapper # Then you decorate the functions you wish with your brand new decorated decorator. @decorated_decorator(42, 404, 1024) def decorated_function(function_arg1, function_arg2): print("Hello {0} {1}".format(function_arg1, function_arg2)) decorated_function("Universe and", "everything") #outputs: #Decorated with (42, 404, 1024) {} #Hello Universe and everything # Whoooot!
I know, the last time you had this feeling, it was after listening a guy saying: "before understanding recursion, you must first understand recursion". But now, don't you feel good about mastering this?
Decorators were introduced in Python 2.4, so be sure your code will be run on >= 2.4.
Decorators slow down the function call. Keep that in mind.
You cannot un-decorate a function. (There are hacks to create decorators that can be removed, but nobody uses them.) So once a function is decorated, it’s decorated for all the code.
Decorators wrap functions, which can make them hard to debug. (This gets better from Python >= 2.5; see below.)
The functools
module was introduced in Python 2.5. It includes the function functools.wraps()
, which copies the name, module, and docstring of the decorated function to its wrapper.
(Fun fact: functools.wraps()
is a decorator! ?)
# For debugging, the stacktrace prints you the function __name__ def foo(): print("foo") print(foo.__name__) #outputs: foo # With a decorator, it gets messy def bar(func): def wrapper(): print("bar") return func() return wrapper @bar def foo(): print("foo") print(foo.__name__) #outputs: wrapper # "functools" can help for that import functools def bar(func): # We say that "wrapper", is wrapping "func" # and the magic begins @functools.wraps(func) def wrapper(): print("bar") return func() return wrapper @bar def foo(): print("foo") print(foo.__name__) #outputs: foo
Now the big question: What can I use decorators for?
Seem cool and powerful, but a practical example would be great. Well, there are 1000 possibilities. Classic uses are extending a function behavior from an external lib (you can't modify it), or for debugging (you don't want to modify it because it’s temporary).
You can use them to extend several functions in a DRY’s way, like so:
def benchmark(func): """ A decorator that prints the time a function takes to execute. """ import time def wrapper(*args, **kwargs): t = time.clock() res = func(*args, **kwargs) print("{0} {1}".format(func.__name__, time.clock()-t)) return res return wrapper def logging(func): """ A decorator that logs the activity of the script. (it actually just prints it, but it could be logging!) """ def wrapper(*args, **kwargs): res = func(*args, **kwargs) print("{0} {1} {2}".format(func.__name__, args, kwargs)) return res return wrapper def counter(func): """ A decorator that counts and prints the number of times a function has been executed """ def wrapper(*args, **kwargs): wrapper.count = wrapper.count + 1 res = func(*args, **kwargs) print("{0} has been used: {1}x".format(func.__name__, wrapper.count)) return res wrapper.count = 0 return wrapper @counter @benchmark @logging def reverse_string(string): return str(reversed(string)) print(reverse_string("Able was I ere I saw Elba")) print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!")) #outputs: #reverse_string ('Able was I ere I saw Elba',) {} #wrapper 0.0 #wrapper has been used: 1x #ablE was I ere I saw elbA #reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {} #wrapper 0.0 #wrapper has been used: 2x #!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A
Of course the good thing with decorators is that you can use them right away on almost anything without rewriting. DRY, I said:
@counter @benchmark @logging def get_random_futurama_quote(): from urllib import urlopen result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read() try: value = result.split("
")[1].split("
")[0] return value.strip() except: return "No, I'm ... doesn't!" print(get_random_futurama_quote()) print(get_random_futurama_quote()) #outputs: #get_random_futurama_quote () {} #wrapper 0.02 #wrapper has been used: 1x #The laws of science be a harsh mistress. #get_random_futurama_quote () {} #wrapper 0.01 #wrapper has been used: 2x #Curse you, merciful Poseidon!
Python itself provides several decorators: property
, staticmethod
, etc.
Django uses decorators to manage caching and view permissions.
Twisted to fake inlining asynchronous functions calls.
This really is a large playground.
查看文档以了解装饰器的工作原理.这是你要求的:
from functools import wraps def makebold(fn): @wraps(fn) def wrapped(*args, **kwargs): return "" + fn(*args, **kwargs) + "" return wrapped def makeitalic(fn): @wraps(fn) def wrapped(*args, **kwargs): return "" + fn(*args, **kwargs) + "" return wrapped @makebold @makeitalic def hello(): return "hello world" @makebold @makeitalic def log(s): return s print hello() # returns "hello world" print hello.__name__ # with functools.wraps() this returns "hello" print log('hello') # returns "hello"
或者,您可以编写一个返回装饰器的工厂函数,该装饰器将装饰函数的返回值包装在传递给工厂函数的标记中.例如:
from functools import wraps def wrap_in_tag(tag): def factory(func): @wraps(func) def decorator(): return '<%(tag)s>%(rv)s%(tag)s>' % ( {'tag': tag, 'rv': func()}) return decorator return factory
这使您可以写:
@wrap_in_tag('b') @wrap_in_tag('i') def say(): return 'hello'
要么
makebold = wrap_in_tag('b') makeitalic = wrap_in_tag('i') @makebold @makeitalic def say(): return 'hello'
就个人而言,我会以不同的方式编写装饰器:
from functools import wraps def wrap_in_tag(tag): def factory(func): @wraps(func) def decorator(val): return func('<%(tag)s>%(val)s%(tag)s>' % {'tag': tag, 'val': val}) return decorator return factory
会产生:
@wrap_in_tag('b') @wrap_in_tag('i') def say(val): return val say('hello')
不要忘记装饰器语法是简写的构造:
say = wrap_in_tag('b')(wrap_in_tag('i')(say)))
看起来其他人已经告诉过你如何解决这个问题.我希望这能帮助你理解装饰器是什么.
装饰者只是语法糖.
这个
@decorator def func(): ...
扩展到
def func(): ... func = decorator(func)
当然,您也可以从装饰器函数返回lambdas:
def makebold(f): return lambda: "" + f() + "" def makeitalic(f): return lambda: "" + f() + "" @makebold @makeitalic def say(): return "Hello" print say()
Python装饰器为另一个函数添加了额外的功能
斜体装饰器可能就像
def makeitalic(fn): def newFunc(): return "" + fn() + "" return newFunc
请注意,函数是在函数内定义的.它基本上做的是用新定义的函数替换函数.例如,我有这门课
class foo: def bar(self): print "hi" def foobar(self): print "hi again"
现在说,我希望两个函数在完成之后和之前打印"---".我可以在每个print语句之前和之后添加一个打印"---".但因为我不喜欢重复自己,我会做一个装饰
def addDashes(fn): # notice it takes a function as an argument def newFunction(self): # define a new function print "---" fn(self) # call the original function print "---" return newFunction # Return the newly defined function - it will "replace" the original
所以现在我可以改变我的课程
class foo: @addDashes def bar(self): print "hi" @addDashes def foobar(self): print "hi again"
有关装饰器的更多信息,请查看 http://www.ibm.com/developerworks/linux/library/l-cpdecor.html
您可以制作两个单独的装饰器,它们可以执行您想要的操作,如下图所示.注意在函数*args, **kwargs
声明中的使用,该wrapped()
函数支持具有多个参数的修饰函数(这对于示例say()
函数来说并不是必需的,但是为了通用性而包括在内).
出于类似的原因,functools.wraps
装饰器用于将包装函数的元属性更改为正在装饰的元素的元属性.这使得错误消息和嵌入式函数文档(func.__doc__
)成为装饰函数而不是wrapped()
's.
from functools import wraps def makebold(fn): @wraps(fn) def wrapped(*args, **kwargs): return "" + fn(*args, **kwargs) + "" return wrapped def makeitalic(fn): @wraps(fn) def wrapped(*args, **kwargs): return "" + fn(*args, **kwargs) + "" return wrapped @makebold @makeitalic def say(): return 'Hello' print(say()) # -> Hello
正如您所看到的,这两个装饰器中存在大量重复代码.鉴于这种相似性,你最好制作一个实际上是装饰工厂的通用工具- 换句话说,是一个制作其他装饰器的装饰器.这样可以减少代码重复次数 - 并允许遵循DRY原则.
def html_deco(tag): def decorator(fn): @wraps(fn) def wrapped(*args, **kwargs): return '<%s>' % tag + fn(*args, **kwargs) + '%s>' % tag return wrapped return decorator @html_deco('b') @html_deco('i') def greet(whom=''): return 'Hello' + (' ' + whom) if whom else '' print(greet('world')) # -> Hello world
为了使代码更具可读性,您可以为工厂生成的装饰器分配更具描述性的名称:
makebold = html_deco('b') makeitalic = html_deco('i') @makebold @makeitalic def greet(whom=''): return 'Hello' + (' ' + whom) if whom else '' print(greet('world')) # -> Hello world
甚至将它们组合成这样:
makebolditalic = lambda fn: makebold(makeitalic(fn)) @makebolditalic def greet(whom=''): return 'Hello' + (' ' + whom) if whom else '' print(greet('world')) # -> Hello world
虽然上面的示例都可以正常工作,但是当一次应用多个装饰器时,生成的代码会以无关函数调用的形式涉及相当大的开销.这可能无关紧要,具体取决于具体用法(例如,可能是I/O绑定).
如果修饰函数的速度很重要,可以通过编写稍微不同的装饰工厂函数来保持一个额外的函数调用开销,该函数实现一次添加所有标记,因此它可以生成代码以避免发生的附加函数调用通过为每个标签使用单独的装饰器.
这需要装饰器本身有更多的代码,但这仅在它被应用于函数定义时运行,而不是在它们自己被调用时运行.当使用lambda
前面所示的函数创建更可读的名称时,这也适用.样品:
def multi_html_deco(*tags): start_tags, end_tags = [], [] for tag in tags: start_tags.append('<%s>' % tag) end_tags.append('%s>' % tag) start_tags = ''.join(start_tags) end_tags = ''.join(reversed(end_tags)) def decorator(fn): @wraps(fn) def wrapped(*args, **kwargs): return start_tags + fn(*args, **kwargs) + end_tags return wrapped return decorator makebolditalic = multi_html_deco('b', 'i') @makebolditalic def greet(whom=''): return 'Hello' + (' ' + whom) if whom else '' print(greet('world')) # -> Hello world
另一种做同样事情的方法:
class bol(object): def __init__(self, f): self.f = f def __call__(self): return "{}".format(self.f()) class ita(object): def __init__(self, f): self.f = f def __call__(self): return "{}".format(self.f()) @bol @ita def sayhi(): return 'hi'
或者,更灵活:
class sty(object): def __init__(self, tag): self.tag = tag def __call__(self, f): def newf(): return "<{tag}>{res}{tag}>".format(res=f(), tag=self.tag) return newf @sty('b') @sty('i') def sayhi(): return 'hi'
如何在Python中创建两个装饰器来执行以下操作?
调用时,您需要以下函数:
@makebold @makeitalic def say(): return "Hello"
回来:
Hello
为了最简单地做到这一点,让make decorators返回关闭函数(闭包)并调用它的lambdas(匿名函数)并调用它:
def makeitalic(fn): return lambda: '' + fn() + '' def makebold(fn): return lambda: '' + fn() + ''
现在根据需要使用它们:
@makebold @makeitalic def say(): return 'Hello'
现在:
>>> say() 'Hello'
但我们似乎几乎失去了原有的功能.
>>> sayat 0x4ACFA070>
为了找到它,我们需要挖掘每个lambda的闭包,其中一个被埋在另一个中:
>>> say.__closure__[0].cell_contentsat 0x4ACFA030> >>> say.__closure__[0].cell_contents.__closure__[0].cell_contents
因此,如果我们将文档放在这个函数上,或者想要能够装饰带有多个参数的函数,或者我们只是想知道我们在调试会话中看到了什么函数,我们需要对我们的函数做更多的事情.包装.
我们有装饰wraps
从functools
模块中的标准库!
from functools import wraps def makeitalic(fn): # must assign/update attributes from wrapped function to wrapper # __module__, __name__, __doc__, and __dict__ by default @wraps(fn) # explicitly give function whose attributes it is applying def wrapped(*args, **kwargs): return '' + fn(*args, **kwargs) + '' return wrapped def makebold(fn): @wraps(fn) def wrapped(*args, **kwargs): return '' + fn(*args, **kwargs) + '' return wrapped
不幸的是,仍然有一些样板,但这很简单,我们可以做到.
在Python 3中,您也可以默认获取__qualname__
和__annotations__
分配.
所以现在:
@makebold @makeitalic def say(): """This function returns a bolded, italicized 'hello'""" return 'Hello'
现在:
>>> say>>> help(say) Help on function say in module __main__: say(*args, **kwargs) This function returns a bolded, italicized 'hello'
所以我们看到,wraps
除了告诉我们函数作为参数的确切内容之外,几乎所有事情都会使包装函数完成.
还有其他模块可能尝试解决该问题,但该解决方案尚未出现在标准库中.
装饰器接受函数定义并创建一个执行此函数并转换结果的新函数.
@deco def do(): ...
是完全相同的:
do = deco(do)
def deco(func): def inner(letter): return func(letter).upper() #upper return inner
这个
@deco def do(number): return chr(number) # number to letter
与此def do2(数字)等效:return chr(number)
def do2(number): return chr(number) do2 = deco(do2)
65 <=>'a'
print(do(65)) print(do2(65)) >>> B >>> B
要理解装饰器,重要的是要注意,装饰器创建了一个新的函数do,它执行func并转换结果.
以更简单的方式解释装饰器:
附:
@decor1 @decor2 def func(*args, **kwargs): pass
什么时候:
func(*args, **kwargs)
你真的这样做:
decor1(decor2(func))(*args, **kwargs)
#decorator.py def makeHtmlTag(tag, *args, **kwds): def real_decorator(fn): css_class = " class='{0}'".format(kwds["css_class"]) \ if "css_class" in kwds else "" def wrapped(*args, **kwds): return "<"+tag+css_class+">" + fn(*args, **kwds) + ""+tag+">" return wrapped # return decorator dont call it return real_decorator @makeHtmlTag(tag="b", css_class="bold_css") @makeHtmlTag(tag="i", css_class="italic_css") def hello(): return "hello world" print hello()
你也可以在Class中编写装饰器
#class.py class makeHtmlTagClass(object): def __init__(self, tag, css_class=""): self._tag = tag self._css_class = " class='{0}'".format(css_class) \ if css_class != "" else "" def __call__(self, fn): def wrapped(*args, **kwargs): return "<" + self._tag + self._css_class+">" \ + fn(*args, **kwargs) + "" + self._tag + ">" return wrapped @makeHtmlTagClass(tag="b", css_class="bold_css") @makeHtmlTagClass(tag="i", css_class="italic_css") def hello(name): return "Hello, {}".format(name) print hello("Your name")
这是链接装饰器的简单示例。注意最后一行-它显示了幕后的内容。
############################################################ # # decorators # ############################################################ def bold(fn): def decorate(): # surround with bold tags before calling original function return "" + fn() + "" return decorate def uk(fn): def decorate(): # swap month and day fields = fn().split('/') date = fields[1] + "/" + fields[0] + "/" + fields[2] return date return decorate import datetime def getDate(): now = datetime.datetime.now() return "%d/%d/%d" % (now.day, now.month, now.year) @bold def getBoldDate(): return getDate() @uk def getUkDate(): return getDate() @bold @uk def getBoldUkDate(): return getDate() print getDate() print getBoldDate() print getUkDate() print getBoldUkDate() # what is happening under the covers print bold(uk(getDate))()
输出如下:
17/6/2013 17/6/2013 6/17/2013 6/17/2013 6/17/2013
这个答案早就得到了回答,但是我想我应该分享我的Decorator类,它使编写新的装饰器变得轻松而紧凑。
from abc import ABCMeta, abstractclassmethod class Decorator(metaclass=ABCMeta): """ Acts as a base class for all decorators """ def __init__(self): self.method = None def __call__(self, method): self.method = method return self.call @abstractclassmethod def call(self, *args, **kwargs): return self.method(*args, **kwargs)
我认为,这可以使修饰器的行为非常明确,但是也可以使简洁地定义新的修饰器变得容易。对于上面列出的示例,您可以将其解决为:
class MakeBold(Decorator): def call(): return "" + self.method() + "" class MakeItalic(Decorator): def call(): return "" + self.method() + "" @MakeBold() @MakeItalic() def say(): return "Hello"
您还可以使用它来执行更复杂的任务,例如装饰器,该装饰器自动使函数递归地应用于迭代器中的所有参数:
class ApplyRecursive(Decorator): def __init__(self, *types): super().__init__() if not len(types): types = (dict, list, tuple, set) self._types = types def call(self, arg): if dict in self._types and isinstance(arg, dict): return {key: self.call(value) for key, value in arg.items()} if set in self._types and isinstance(arg, set): return set(self.call(value) for value in arg) if tuple in self._types and isinstance(arg, tuple): return tuple(self.call(value) for value in arg) if list in self._types and isinstance(arg, list): return list(self.call(value) for value in arg) return self.method(arg) @ApplyRecursive(tuple, set, dict) def double(arg): return 2*arg print(double(1)) print(double({'a': 1, 'b': 2})) print(double({1, 2, 3})) print(double((1, 2, 3, 4))) print(double([1, 2, 3, 4, 5]))
哪些打印:
2 {'a': 2, 'b': 4} {2, 4, 6} (2, 4, 6, 8) [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
请注意,此示例未list
在装饰器的实例中包括类型,因此在最终的print语句中,方法将应用于列表本身,而不是列表的元素。
说到计数器示例-如上所述,该计数器将在使用装饰器的所有函数之间共享:
def counter(func): def wrapped(*args, **kws): print 'Called #%i' % wrapped.count wrapped.count += 1 return func(*args, **kws) wrapped.count = 0 return wrapped
这样,您的装饰器可以重复用于不同的功能(或多次用于装饰相同的功能:)func_counter1 = counter(func); func_counter2 = counter(func)
,并且counter变量将对每个函数保持私有。