当前位置:  开发笔记 > 编程语言 > 正文

如何制作一系列功能装饰器?

如何解决《如何制作一系列功能装饰器?》经验,为你挑选了15个好方法。

如何在Python中创建两个装饰器来执行以下操作?

@makebold
@makeitalic
def say():
   return "Hello"

...应该返回:

"Hello"

我不是试图HTML在一个真实的应用程序中这样做 - 只是试图了解装饰器和装饰器链是如何工作的.



1> e-satis..:

如果您没有详细解释,请参阅Paolo Bergantino的答案.

装饰师基础知识

Python的功能是对象

要理解装饰器,首先必须了解函数是Python中的对象.这具有重要的后果.让我们看一个简单的例子:

def shout(word="yes"):
    return word.capitalize()+"!"

print(shout())
# outputs : 'Yes!'

# As an object, you can assign the function to a variable like any other object 
scream = shout

# Notice we don't use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":

print(scream())
# outputs : 'Yes!'

# More than that, it means you can remove the old name 'shout',
# and the function will still be accessible from 'scream'

del shout
try:
    print(shout())
except NameError as e:
    print(e)
    #outputs: "name 'shout' is not defined"

print(scream())
# outputs: 'Yes!'

记住这一点.我们很快就会回过头来.

Python函数的另一个有趣的属性是它们可以在另一个函数中定义!

def talk():

    # You can define a function on the fly in "talk" ...
    def whisper(word="yes"):
        return word.lower()+"..."

    # ... and use it right away!
    print(whisper())

# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk". 
talk()
# outputs: 
# "yes..."

# But "whisper" DOES NOT EXIST outside "talk":

try:
    print(whisper())
except NameError as e:
    print(e)
    #outputs : "name 'whisper' is not defined"*
    #Python's functions are objects

函数参考

好的,还在吗?现在有趣的部分......

你已经看到函数是对象.因此,功能:

可以分配给变量

可以在另一个函数中定义

这意味着一个函数可以是return另一个函数.

def getTalk(kind="shout"):

    # We define functions on the fly
    def shout(word="yes"):
        return word.capitalize()+"!"

    def whisper(word="yes") :
        return word.lower()+"...";

    # Then we return one of them
    if kind == "shout":
        # We don't use "()", we are not calling the function,
        # we are returning the function object
        return shout  
    else:
        return whisper

# How do you use this strange beast?

# Get the function and assign it to a variable
talk = getTalk()      

# You can see that "talk" is here a function object:
print(talk)
#outputs : 

# The object is the one returned by the function:
print(talk())
#outputs : Yes!

# And you can even use it directly if you feel wild:
print(getTalk("whisper")())
#outputs : yes...

还有更多!

如果你可以使用return一个函数,你可以传递一个作为参数:

def doSomethingBefore(func): 
    print("I do something before then I call the function you gave me")
    print(func())

doSomethingBefore(scream)
#outputs: 
#I do something before then I call the function you gave me
#Yes!

好吧,你只需要了解装饰器所需的一切.你看,装饰器是"包装器",这意味着它们允许你在它们装饰的函数之前和之后执行代码而不修改函数本身.

手工装饰

你是如何手动完成的:

# A decorator is a function that expects ANOTHER function as parameter
def my_shiny_new_decorator(a_function_to_decorate):

    # Inside, the decorator defines a function on the fly: the wrapper.
    # This function is going to be wrapped around the original function
    # so it can execute code before and after it.
    def the_wrapper_around_the_original_function():

        # Put here the code you want to be executed BEFORE the original function is called
        print("Before the function runs")

        # Call the function here (using parentheses)
        a_function_to_decorate()

        # Put here the code you want to be executed AFTER the original function is called
        print("After the function runs")

    # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
    # We return the wrapper function we have just created.
    # The wrapper contains the function and the code to execute before and after. It’s ready to use!
    return the_wrapper_around_the_original_function

# Now imagine you create a function you don't want to ever touch again.
def a_stand_alone_function():
    print("I am a stand alone function, don't you dare modify me")

a_stand_alone_function() 
#outputs: I am a stand alone function, don't you dare modify me

# Well, you can decorate it to extend its behavior.
# Just pass it to the decorator, it will wrap it dynamically in 
# any code you want and return you a new function ready to be used:

a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

现在,您可能希望每次打电话时a_stand_alone_function,a_stand_alone_function_decorated都会调用它.这很简单,只需a_stand_alone_function使用返回的函数覆盖my_shiny_new_decorator:

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

# That’s EXACTLY what decorators do!

装饰者神秘化了

上一个示例,使用装饰器语法:

@my_shiny_new_decorator
def another_stand_alone_function():
    print("Leave me alone")

another_stand_alone_function()  
#outputs:  
#Before the function runs
#Leave me alone
#After the function runs

是的,就是这样,就这么简单.@decorator只是一个快捷方式:

another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)

装饰器只是装饰器设计模式的pythonic变体.Python中嵌入了几种经典设计模式以简化开发(如迭代器).

当然,你可以积累装饰器:

def bread(func):
    def wrapper():
        print("")
        func()
        print("<\______/>")
    return wrapper

def ingredients(func):
    def wrapper():
        print("#tomatoes#")
        func()
        print("~salad~")
    return wrapper

def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs: --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

使用Python装饰器语法:

@bread
@ingredients
def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs:
#
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

您设置装饰器MATTERS的顺序:

@ingredients
@bread
def strange_sandwich(food="--ham--"):
    print(food)

strange_sandwich()
#outputs:
##tomatoes#
#
# --ham--
#<\______/>
# ~salad~

现在:回答这个问题......

总之,您可以轻松地看到如何回答这个问题:

# The decorator to make it bold
def makebold(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "" + fn() + ""
    return wrapper

# The decorator to make it italic
def makeitalic(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "" + fn() + ""
    return wrapper

@makebold
@makeitalic
def say():
    return "hello"

print(say())
#outputs: hello

# This is the exact equivalent to 
def say():
    return "hello"
say = makebold(makeitalic(say))

print(say())
#outputs: hello

你现在可以离开快乐,或者更多地燃烧你的大脑并看到装饰器的高级用途.


将装饰器提升到一个新的水平

将参数传递给修饰函数

# It’s not black magic, you just have to let the wrapper 
# pass the argument:

def a_decorator_passing_arguments(function_to_decorate):
    def a_wrapper_accepting_arguments(arg1, arg2):
        print("I got args! Look: {0}, {1}".format(arg1, arg2))
        function_to_decorate(arg1, arg2)
    return a_wrapper_accepting_arguments

# Since when you are calling the function returned by the decorator, you are
# calling the wrapper, passing arguments to the wrapper will let it pass them to 
# the decorated function

@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
    print("My name is {0} {1}".format(first_name, last_name))

print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman

装饰方法

关于Python的一个好消息是方法和函数真的是一样的.唯一的区别是方法期望它们的第一个参数是对当前object(self)的引用.

这意味着您可以以相同的方式为方法构建装饰器!请记住要考虑self到:

def method_friendly_decorator(method_to_decorate):
    def wrapper(self, lie):
        lie = lie - 3 # very friendly, decrease age even more :-)
        return method_to_decorate(self, lie)
    return wrapper


class Lucy(object):

    def __init__(self):
        self.age = 32

    @method_friendly_decorator
    def sayYourAge(self, lie):
        print("I am {0}, what did you think?".format(self.age + lie))

l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?

If you’re making general-purpose decorator--one you’ll apply to any function or method, no matter its arguments--then just use *args, **kwargs:

def a_decorator_passing_arbitrary_arguments(function_to_decorate):
    # The wrapper accepts any arguments
    def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
        print("Do I have args?:")
        print(args)
        print(kwargs)
        # Then you unpack the arguments, here *args, **kwargs
        # If you are not familiar with unpacking, check:
        # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
        function_to_decorate(*args, **kwargs)
    return a_wrapper_accepting_arbitrary_arguments

@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
    print("Python is cool, no argument here.")

function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.

@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
    print(a, b, c)

function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3 

@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
    print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))

function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#('Bill', 'Linus', 'Steve')
#{'platypus': 'Indeed!'}
#Do Bill, Linus and Steve like platypus? Indeed!

class Mary(object):

    def __init__(self):
        self.age = 31

    @a_decorator_passing_arbitrary_arguments
    def sayYourAge(self, lie=-3): # You can now add a default value
        print("I am {0}, what did you think?".format(self.age + lie))

m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?

Passing arguments to the decorator

Great, now what would you say about passing arguments to the decorator itself?

This can get somewhat twisted, since a decorator must accept a function as an argument. Therefore, you cannot pass the decorated function’s arguments directly to the decorator.

Before rushing to the solution, let’s write a little reminder:

# Decorators are ORDINARY functions
def my_decorator(func):
    print("I am an ordinary function")
    def wrapper():
        print("I am function returned by the decorator")
        func()
    return wrapper

# Therefore, you can call it without any "@"

def lazy_function():
    print("zzzzzzzz")

decorated_function = my_decorator(lazy_function)
#outputs: I am an ordinary function

# It outputs "I am an ordinary function", because that’s just what you do:
# calling a function. Nothing magic.

@my_decorator
def lazy_function():
    print("zzzzzzzz")

#outputs: I am an ordinary function

It’s exactly the same. "my_decorator" is called. So when you @my_decorator, you are telling Python to call the function 'labelled by the variable "my_decorator"'.

This is important! The label you give can point directly to the decorator—or not.

Let’s get evil. ?

def decorator_maker():

    print("I make decorators! I am executed only once: "
          "when you make me create a decorator.")

    def my_decorator(func):

        print("I am a decorator! I am executed only when you decorate a function.")

        def wrapped():
            print("I am the wrapper around the decorated function. "
                  "I am called when you call the decorated function. "
                  "As the wrapper, I return the RESULT of the decorated function.")
            return func()

        print("As the decorator, I return the wrapped function.")

        return wrapped

    print("As a decorator maker, I return a decorator")
    return my_decorator

# Let’s create a decorator. It’s just a new function after all.
new_decorator = decorator_maker()       
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator

# Then we decorate the function

def decorated_function():
    print("I am the decorated function.")

decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function

# Let’s call the function:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

No surprise here.

Let’s do EXACTLY the same thing, but skip all the pesky intermediate variables:

def decorated_function():
    print("I am the decorated function.")
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

# Finally:
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Let’s make it even shorter:

@decorator_maker()
def decorated_function():
    print("I am the decorated function.")
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

#Eventually: 
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Hey, did you see that? We used a function call with the "@" syntax! :-)

So, back to decorators with arguments. If we can use functions to generate the decorator on the fly, we can pass arguments to that function, right?

def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):

    print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))

    def my_decorator(func):
        # The ability to pass arguments here is a gift from closures.
        # If you are not comfortable with closures, you can assume it’s ok,
        # or read: /sf/ask/17360801/
        print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))

        # Don't confuse decorator arguments and function arguments!
        def wrapped(function_arg1, function_arg2) :
            print("I am the wrapper around the decorated function.\n"
                  "I can access all the variables\n"
                  "\t- from the decorator: {0} {1}\n"
                  "\t- from the function call: {2} {3}\n"
                  "Then I can pass them to the decorated function"
                  .format(decorator_arg1, decorator_arg2,
                          function_arg1, function_arg2))
            return func(function_arg1, function_arg2)

        return wrapped

    return my_decorator

@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments: {0}"
           " {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Sheldon 
#   - from the function call: Rajesh Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard

Here it is: a decorator with arguments. Arguments can be set as variable:

c1 = "Penny"
c2 = "Leslie"

@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments:"
           " {0} {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Penny 
#   - from the function call: Leslie Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only know about my arguments: Leslie Howard

As you can see, you can pass arguments to the decorator like any function using this trick. You can even use *args, **kwargs if you wish. But remember decorators are called only once. Just when Python imports the script. You can't dynamically set the arguments afterwards. When you do "import x", the function is already decorated, so you can't change anything.


Let’s practice: decorating a decorator

Okay, as a bonus, I'll give you a snippet to make any decorator accept generically any argument. After all, in order to accept arguments, we created our decorator using another function.

We wrapped the decorator.

Anything else we saw recently that wrapped function?

Oh yes, decorators!

Let’s have some fun and write a decorator for the decorators:

def decorator_with_args(decorator_to_enhance):
    """ 
    This function is supposed to be used as a decorator.
    It must decorate an other function, that is intended to be used as a decorator.
    Take a cup of coffee.
    It will allow any decorator to accept an arbitrary number of arguments,
    saving you the headache to remember how to do that every time.
    """

    # We use the same trick we did to pass arguments
    def decorator_maker(*args, **kwargs):

        # We create on the fly a decorator that accepts only a function
        # but keeps the passed arguments from the maker.
        def decorator_wrapper(func):

            # We return the result of the original decorator, which, after all, 
            # IS JUST AN ORDINARY FUNCTION (which returns a function).
            # Only pitfall: the decorator must have this specific signature or it won't work:
            return decorator_to_enhance(func, *args, **kwargs)

        return decorator_wrapper

    return decorator_maker

It can be used as follows:

# You create the function you will use as a decorator. And stick a decorator on it :-)
# Don't forget, the signature is "decorator(func, *args, **kwargs)"
@decorator_with_args 
def decorated_decorator(func, *args, **kwargs): 
    def wrapper(function_arg1, function_arg2):
        print("Decorated with {0} {1}".format(args, kwargs))
        return func(function_arg1, function_arg2)
    return wrapper

# Then you decorate the functions you wish with your brand new decorated decorator.

@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
    print("Hello {0} {1}".format(function_arg1, function_arg2))

decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything

# Whoooot!

I know, the last time you had this feeling, it was after listening a guy saying: "before understanding recursion, you must first understand recursion". But now, don't you feel good about mastering this?


Best practices: decorators

Decorators were introduced in Python 2.4, so be sure your code will be run on >= 2.4.

Decorators slow down the function call. Keep that in mind.

You cannot un-decorate a function. (There are hacks to create decorators that can be removed, but nobody uses them.) So once a function is decorated, it’s decorated for all the code.

Decorators wrap functions, which can make them hard to debug. (This gets better from Python >= 2.5; see below.)

The functools module was introduced in Python 2.5. It includes the function functools.wraps(), which copies the name, module, and docstring of the decorated function to its wrapper.

(Fun fact: functools.wraps() is a decorator! ?)

# For debugging, the stacktrace prints you the function __name__
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

# With a decorator, it gets messy    
def bar(func):
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: wrapper

# "functools" can help for that

import functools

def bar(func):
    # We say that "wrapper", is wrapping "func"
    # and the magic begins
    @functools.wraps(func)
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

How can the decorators be useful?

Now the big question: What can I use decorators for?

Seem cool and powerful, but a practical example would be great. Well, there are 1000 possibilities. Classic uses are extending a function behavior from an external lib (you can't modify it), or for debugging (you don't want to modify it because it’s temporary).

You can use them to extend several functions in a DRY’s way, like so:

def benchmark(func):
    """
    A decorator that prints the time a function takes
    to execute.
    """
    import time
    def wrapper(*args, **kwargs):
        t = time.clock()
        res = func(*args, **kwargs)
        print("{0} {1}".format(func.__name__, time.clock()-t))
        return res
    return wrapper


def logging(func):
    """
    A decorator that logs the activity of the script.
    (it actually just prints it, but it could be logging!)
    """
    def wrapper(*args, **kwargs):
        res = func(*args, **kwargs)
        print("{0} {1} {2}".format(func.__name__, args, kwargs))
        return res
    return wrapper


def counter(func):
    """
    A decorator that counts and prints the number of times a function has been executed
    """
    def wrapper(*args, **kwargs):
        wrapper.count = wrapper.count + 1
        res = func(*args, **kwargs)
        print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
        return res
    wrapper.count = 0
    return wrapper

@counter
@benchmark
@logging
def reverse_string(string):
    return str(reversed(string))

print(reverse_string("Able was I ere I saw Elba"))
print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))

#outputs:
#reverse_string ('Able was I ere I saw Elba',) {}
#wrapper 0.0
#wrapper has been used: 1x 
#ablE was I ere I saw elbA
#reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A

Of course the good thing with decorators is that you can use them right away on almost anything without rewriting. DRY, I said:

@counter
@benchmark
@logging
def get_random_futurama_quote():
    from urllib import urlopen
    result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
    try:
        value = result.split("


")[1].split("


")[0] return value.strip() except: return "No, I'm ... doesn't!" print(get_random_futurama_quote()) print(get_random_futurama_quote()) #outputs: #get_random_futurama_quote () {} #wrapper 0.02 #wrapper has been used: 1x #The laws of science be a harsh mistress. #get_random_futurama_quote () {} #wrapper 0.01 #wrapper has been used: 2x #Curse you, merciful Poseidon!

Python itself provides several decorators: property, staticmethod, etc.

Django uses decorators to manage caching and view permissions.

Twisted to fake inlining asynchronous functions calls.

This really is a large playground.


"你无法解开功能." - 虽然通常是正确的,但是可以通过装饰器(即通过其`__closure__`属性)在函数返回中到达闭包内部以拉出原始的未修饰函数.[本答案](http://stackoverflow.com/a/33254457/2904896)中记录了一个示例用法,其中介绍了如何在有限的情况下在较低级别注入装饰器功能.
虽然这是一个很好的答案,但我认为它在某些方面有点误导.Python的`@ decorator`语法可能最常用于用包装器闭包替换函数(如答案所述).但它也可以用其他东西取代功能.例如,内置`property`,`classmethod`和`staticmethod`装饰器用一个描述符替换该函数.装饰器也可以对某个函数执行某些操作,例如在某种类型的注册表中保存对它的引用,然后在没有任何包装的情况下返回它,不进行修改.
事实上"函数是对象"虽然在Python中完全正确,但有点误导.将函数存储在变量中,将它们作为参数传递,并将它们作为结果返回都是可能的,而函数实际上不是对象,并且有各种语言具有第一类函数但没有对象.

2> Paolo Bergan..:

查看文档以了解装饰器的工作原理.这是你要求的:

from functools import wraps

def makebold(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return "" + fn(*args, **kwargs) + ""
    return wrapped

def makeitalic(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return "" + fn(*args, **kwargs) + ""
    return wrapped

@makebold
@makeitalic
def hello():
    return "hello world"

@makebold
@makeitalic
def log(s):
    return s

print hello()        # returns "hello world"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello')   # returns "hello"


考虑使用[functools.wraps](http://docs.python.org/library/functools.html#functools.wraps),或者更好的是[PyPI的装饰模块](http://pypi.python.org/pypi/decorator):它们保留了某些重要的元数据(例如`__name__`,并且讲述了装饰包,函数签名).
应该在答案中添加`*args`和`**kwargs`.装饰函数可以有参数,如果没有指定,它们将丢失.

3> 小智..:

或者,您可以编写一个返回装饰器的工厂函数,该装饰器将装饰函数的返回值包装在传递给工厂函数的标记中.例如:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator():
            return '<%(tag)s>%(rv)s' % (
                {'tag': tag, 'rv': func()})
        return decorator
    return factory

这使您可以写:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say():
    return 'hello'

要么

makebold = wrap_in_tag('b')
makeitalic = wrap_in_tag('i')

@makebold
@makeitalic
def say():
    return 'hello'

就个人而言,我会以不同的方式编写装饰器:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator(val):
            return func('<%(tag)s>%(val)s' %
                        {'tag': tag, 'val': val})
        return decorator
    return factory

会产生:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say(val):
    return val
say('hello')

不要忘记装饰器语法是简写的构造:

say = wrap_in_tag('b')(wrap_in_tag('i')(say)))


在我看来,最好尽量避免使用多个装饰器.如果我必须写一个工厂函数,我会用*kwargs编码,比如`def wrap_in_tag(*kwargs)```@wrap_in_tag('b','i')`

4> Unknown..:

看起来其他人已经告诉过你如何解决这个问题.我希望这能帮助你理解装饰器是什么.

装饰者只是语法糖.

这个

@decorator
def func():
    ...

扩展到

def func():
    ...
func = decorator(func)


这是如此优雅,简单,易于理解。Ockham爵士,为您提供10000票。
简单好回答。还要补充一点,当使用`@decorator()`(而不是`@ decorator`)时,它是`func = decorator()(func)`的语法糖。当您需要“动态”生成装饰器时,这也是常见的做法

5> Rune Kaagaar..:

当然,您也可以从装饰器函数返回lambdas:

def makebold(f): 
    return lambda: "" + f() + ""
def makeitalic(f): 
    return lambda: "" + f() + ""

@makebold
@makeitalic
def say():
    return "Hello"

print say()


@Robᵩ:语法正确:`makebold = lambda f:lambda:""+ f()+""`
更进一步:`makebold = lambda f:lambda""+ f()+""`
晚了,但我真的建议`makebold = lambda f:lambda*a,**k:""+ f(*a,**k)+""`

6> Abhinav Gupt..:

Python装饰器为另一个函数添加了额外的功能

斜体装饰器可能就像

def makeitalic(fn):
    def newFunc():
        return "" + fn() + ""
    return newFunc

请注意,函数是在函数内定义的.它基本上做的是用新定义的函数替换函数.例如,我有这门课

class foo:
    def bar(self):
        print "hi"
    def foobar(self):
        print "hi again"

现在说,我希望两个函数在完成之后和之前打印"---".我可以在每个print语句之前和之后添加一个打印"---".但因为我不喜欢重复自己,我会做一个装饰

def addDashes(fn): # notice it takes a function as an argument
    def newFunction(self): # define a new function
        print "---"
        fn(self) # call the original function
        print "---"
    return newFunction
    # Return the newly defined function - it will "replace" the original

所以现在我可以改变我的课程

class foo:
    @addDashes
    def bar(self):
        print "hi"

    @addDashes
    def foobar(self):
        print "hi again"

有关装饰器的更多信息,请查看 http://www.ibm.com/developerworks/linux/library/l-cpdecor.html



7> martineau..:

可以制作两个单独的装饰器,它们可以执行您想要的操作,如下图所示.注意在函数*args, **kwargs声明中的使用,该wrapped()函数支持具有多个参数的修饰函数(这对于示例say()函数来说并不是必需的,但是为了通用性而包括在内).

出于类似的原因,functools.wraps装饰器用于将包装函数的元属性更改为正在装饰的元素的元属性.这使得错误消息和嵌入式函数文档(func.__doc__)成为装饰函数而不是wrapped()'s.

from functools import wraps

def makebold(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return "" + fn(*args, **kwargs) + ""
    return wrapped

def makeitalic(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return "" + fn(*args, **kwargs) + ""
    return wrapped

@makebold
@makeitalic
def say():
    return 'Hello'

print(say())  # -> Hello

改进

正如您所看到的,这两个装饰器中存在大量重复代码.鉴于这种相似性,你最好制作一个实际上是装饰工厂的通用工具- 换句话说,是一个制作其他装饰器的装饰器.这样可以减少代码重复次数 - 并允许遵循DRY原则.

def html_deco(tag):
    def decorator(fn):
        @wraps(fn)
        def wrapped(*args, **kwargs):
            return '<%s>' % tag + fn(*args, **kwargs) + '' % tag
        return wrapped
    return decorator

@html_deco('b')
@html_deco('i')
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> Hello world

为了使代码更具可读性,您可以为工厂生成的装饰器分配更具描述性的名称:

makebold = html_deco('b')
makeitalic = html_deco('i')

@makebold
@makeitalic
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> Hello world

甚至将它们组合成这样:

makebolditalic = lambda fn: makebold(makeitalic(fn))

@makebolditalic
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> Hello world

效率

虽然上面的示例都可以正常工作,但是当一次应用多个装饰器时,生成的代码会以无关函数调用的形式涉及相当大的开销.这可能无关紧要,具体取决于具体用法(例如,可能是I/O绑定).

如果修饰函数的速度很重要,可以通过编写稍微不同的装饰工厂函数来保持一个额外的函数调用开销,该函数实现一次添加所有标记,因此它可以生成代码以避免发生的附加函数调用通过为每个标签使用单独的装饰器.

这需要装饰器本身有更多的代码,但这仅在它被应用于函数定义时运行,而不是在它们自己被调用时运行.当使用lambda前面所示的函数创建更可读的名称时,这也适用.样品:

def multi_html_deco(*tags):
    start_tags, end_tags = [], []
    for tag in tags:
        start_tags.append('<%s>' % tag)
        end_tags.append('' % tag)
    start_tags = ''.join(start_tags)
    end_tags = ''.join(reversed(end_tags))

    def decorator(fn):
        @wraps(fn)
        def wrapped(*args, **kwargs):
            return start_tags + fn(*args, **kwargs) + end_tags
        return wrapped
    return decorator

makebolditalic = multi_html_deco('b', 'i')

@makebolditalic
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> Hello world



8> qed..:

另一种做同样事情的方法:

class bol(object):
  def __init__(self, f):
    self.f = f
  def __call__(self):
    return "{}".format(self.f())

class ita(object):
  def __init__(self, f):
    self.f = f
  def __call__(self):
    return "{}".format(self.f())

@bol
@ita
def sayhi():
  return 'hi'

或者,更灵活:

class sty(object):
  def __init__(self, tag):
    self.tag = tag
  def __call__(self, f):
    def newf():
      return "<{tag}>{res}".format(res=f(), tag=self.tag)
    return newf

@sty('b')
@sty('i')
def sayhi():
  return 'hi'



9> Aaron Hall..:
如何在Python中创建两个装饰器来执行以下操作?

调用时,您需要以下函数:

@makebold
@makeitalic
def say():
    return "Hello"

回来:

Hello

简单解决方案

为了最简单地做到这一点,让make decorators返回关闭函数(闭包)并调用它的lambdas(匿名函数)并调用它:

def makeitalic(fn):
    return lambda: '' + fn() + ''

def makebold(fn):
    return lambda: '' + fn() + ''

现在根据需要使用它们:

@makebold
@makeitalic
def say():
    return 'Hello'

现在:

>>> say()
'Hello'

简单解决方案的问题

但我们似乎几乎失去了原有的功能.

>>> say
 at 0x4ACFA070>

为了找到它,我们需要挖掘每个lambda的闭包,其中一个被埋在另一个中:

>>> say.__closure__[0].cell_contents
 at 0x4ACFA030>
>>> say.__closure__[0].cell_contents.__closure__[0].cell_contents

因此,如果我们将文档放在这个函数上,或者想要能够装饰带有多个参数的函数,或者我们只是想知道我们在调试会话中看到了什么函数,我们需要对我们的函数做更多的事情.包装.

全功能解决方案 - 克服大多数这些问题

我们有装饰wrapsfunctools模块中的标准库!

from functools import wraps

def makeitalic(fn):
    # must assign/update attributes from wrapped function to wrapper
    # __module__, __name__, __doc__, and __dict__ by default
    @wraps(fn) # explicitly give function whose attributes it is applying
    def wrapped(*args, **kwargs):
        return '' + fn(*args, **kwargs) + ''
    return wrapped

def makebold(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return '' + fn(*args, **kwargs) + ''
    return wrapped

不幸的是,仍然有一些样板,但这很简单,我们可以做到.

在Python 3中,您也可以默认获取__qualname____annotations__分配.

所以现在:

@makebold
@makeitalic
def say():
    """This function returns a bolded, italicized 'hello'"""
    return 'Hello'

现在:

>>> say

>>> help(say)
Help on function say in module __main__:

say(*args, **kwargs)
    This function returns a bolded, italicized 'hello'

结论

所以我们看到,wraps除了告诉我们函数作为参数的确切内容之外,几乎所有事情都会使包装函数完成.

还有其他模块可能尝试解决该问题,但该解决方案尚未出现在标准库中.



10> Davoud Tagha..:

装饰器接受函数定义并创建一个执行此函数并转换结果的新函数.

@deco
def do():
    ...

是完全相同的:

do = deco(do)

例:

def deco(func):
    def inner(letter):
        return func(letter).upper()  #upper
    return inner

这个

@deco
def do(number):
    return chr(number)  # number to letter

与此def do2(数字)等效:return chr(number)

def do2(number):
    return chr(number)

do2 = deco(do2)

65 <=>'a'

print(do(65))
print(do2(65))
>>> B
>>> B

要理解装饰器,重要的是要注意,装饰器创建了一个新的函数do,它执行func并转换结果.



11> changyuheng..:

以更简单的方式解释装饰器:

附:

@decor1
@decor2
def func(*args, **kwargs):
    pass

什么时候:

func(*args, **kwargs)

你真的这样做:

decor1(decor2(func))(*args, **kwargs)



12> nickleefly..:
#decorator.py
def makeHtmlTag(tag, *args, **kwds):
    def real_decorator(fn):
        css_class = " class='{0}'".format(kwds["css_class"]) \
                                 if "css_class" in kwds else ""
        def wrapped(*args, **kwds):
            return "<"+tag+css_class+">" + fn(*args, **kwds) + ""
        return wrapped
    # return decorator dont call it
    return real_decorator

@makeHtmlTag(tag="b", css_class="bold_css")
@makeHtmlTag(tag="i", css_class="italic_css")
def hello():
    return "hello world"

print hello()

你也可以在Class中编写装饰器

#class.py
class makeHtmlTagClass(object):
    def __init__(self, tag, css_class=""):
        self._tag = tag
        self._css_class = " class='{0}'".format(css_class) \
                                       if css_class != "" else ""

    def __call__(self, fn):
        def wrapped(*args, **kwargs):
            return "<" + self._tag + self._css_class+">"  \
                       + fn(*args, **kwargs) + ""
        return wrapped

@makeHtmlTagClass(tag="b", css_class="bold_css")
@makeHtmlTagClass(tag="i", css_class="italic_css")
def hello(name):
    return "Hello, {}".format(name)

print hello("Your name")



13> resigned..:

这是链接装饰器的简单示例。注意最后一行-它显示了幕后的内容。

############################################################
#
#    decorators
#
############################################################

def bold(fn):
    def decorate():
        # surround with bold tags before calling original function
        return "" + fn() + ""
    return decorate


def uk(fn):
    def decorate():
        # swap month and day
        fields = fn().split('/')
        date = fields[1] + "/" + fields[0] + "/" + fields[2]
        return date
    return decorate

import datetime
def getDate():
    now = datetime.datetime.now()
    return "%d/%d/%d" % (now.day, now.month, now.year)

@bold
def getBoldDate(): 
    return getDate()

@uk
def getUkDate():
    return getDate()

@bold
@uk
def getBoldUkDate():
    return getDate()


print getDate()
print getBoldDate()
print getUkDate()
print getBoldUkDate()
# what is happening under the covers
print bold(uk(getDate))()

输出如下:

17/6/2013
17/6/2013
6/17/2013
6/17/2013
6/17/2013



14> v4gil..:

这个答案早就得到了回答,但是我想我应该分享我的Decorator类,它使编写新的装饰器变得轻松而紧凑。

from abc import ABCMeta, abstractclassmethod

class Decorator(metaclass=ABCMeta):
    """ Acts as a base class for all decorators """

    def __init__(self):
        self.method = None

    def __call__(self, method):
        self.method = method
        return self.call

    @abstractclassmethod
    def call(self, *args, **kwargs):
        return self.method(*args, **kwargs)

我认为,这可以使修饰器的行为非常明确,但是也可以使简洁地定义新的修饰器变得容易。对于上面列出的示例,您可以将其解决为:

class MakeBold(Decorator):
    def call():
        return "" + self.method() + ""

class MakeItalic(Decorator):
    def call():
        return "" + self.method() + ""

@MakeBold()
@MakeItalic()
def say():
   return "Hello"

您还可以使用它来执行更复杂的任务,例如装饰器,该装饰器自动使函数递归地应用于迭代器中的所有参数:

class ApplyRecursive(Decorator):
    def __init__(self, *types):
        super().__init__()
        if not len(types):
            types = (dict, list, tuple, set)
        self._types = types

    def call(self, arg):
        if dict in self._types and isinstance(arg, dict):
            return {key: self.call(value) for key, value in arg.items()}

        if set in self._types and isinstance(arg, set):
            return set(self.call(value) for value in arg)

        if tuple in self._types and isinstance(arg, tuple):
            return tuple(self.call(value) for value in arg)

        if list in self._types and isinstance(arg, list):
            return list(self.call(value) for value in arg)

        return self.method(arg)


@ApplyRecursive(tuple, set, dict)
def double(arg):
    return 2*arg

print(double(1))
print(double({'a': 1, 'b': 2}))
print(double({1, 2, 3}))
print(double((1, 2, 3, 4)))
print(double([1, 2, 3, 4, 5]))

哪些打印:

2
{'a': 2, 'b': 4}
{2, 4, 6}
(2, 4, 6, 8)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

请注意,此示例未list在装饰器的实例中包括类型,因此在最终的print语句中,方法将应用于列表本身,而不是列表的元素。



15> marqueed..:

说到计数器示例-如上所述,该计数器将在使用装饰器的所有函数之间共享:

def counter(func):
    def wrapped(*args, **kws):
        print 'Called #%i' % wrapped.count
        wrapped.count += 1
        return func(*args, **kws)
    wrapped.count = 0
    return wrapped

这样,您的装饰器可以重复用于不同的功能(或多次用于装饰相同的功能:)func_counter1 = counter(func); func_counter2 = counter(func),并且counter变量将对每个函数保持私有。

推荐阅读
周扒pi
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有