为了构建NaiveBayes多类分类器,我使用CrossValidator来选择管道中的最佳参数:
val cv = new CrossValidator() .setEstimator(pipeline) .setEstimatorParamMaps(paramGrid) .setEvaluator(new MulticlassClassificationEvaluator) .setNumFolds(10) val cvModel = cv.fit(trainingSet)
管道包含通常的变换器和估计器,顺序如下:Tokenizer,StopWordsRemover,HashingTF,IDF,最后是NaiveBayes.
是否可以访问为最佳模型计算的指标?
理想情况下,我想访问所有模型的指标,以了解更改参数如何改变分类的质量.但目前,最好的模型已经足够好了.
仅供参考,我使用的是Spark 1.6.0
我是这样做的:
val pipeline = new Pipeline() .setStages(Array(tokenizer, stopWordsFilter, tf, idf, word2Vec, featureVectorAssembler, categoryIndexerModel, classifier, categoryReverseIndexer)) ... val paramGrid = new ParamGridBuilder() .addGrid(tf.numFeatures, Array(10, 100)) .addGrid(idf.minDocFreq, Array(1, 10)) .addGrid(word2Vec.vectorSize, Array(200, 300)) .addGrid(classifier.maxDepth, Array(3, 5)) .build() paramGrid.size // 16 entries ... // Print the average metrics per ParamGrid entry val avgMetricsParamGrid = crossValidatorModel.avgMetrics // Combine with paramGrid to see how they affect the overall metrics val combined = paramGrid.zip(avgMetricsParamGrid) ... val bestModel = crossValidatorModel.bestModel.asInstanceOf[PipelineModel] // Explain params for each stage val bestHashingTFNumFeatures = bestModel.stages(2).asInstanceOf[HashingTF].explainParams val bestIDFMinDocFrequency = bestModel.stages(3).asInstanceOf[IDFModel].explainParams val bestWord2VecVectorSize = bestModel.stages(4).asInstanceOf[Word2VecModel].explainParams val bestDecisionTreeDepth = bestModel.stages(7).asInstanceOf[DecisionTreeClassificationModel].explainParams