我正在研究关键字提取问题.考虑一般情况
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words='english') t = """Two Travellers, walking in the noonday sun, sought the shade of a widespreading tree to rest. As they lay looking up among the pleasant leaves, they saw that it was a Plane Tree. "How useless is the Plane!" said one of them. "It bears no fruit whatever, and only serves to litter the ground with leaves." "Ungrateful creatures!" said a voice from the Plane Tree. "You lie here in my cooling shade, and yet you say I am useless! Thus ungratefully, O Jupiter, do men receive their blessings!" Our best blessings are often the least appreciated.""" tfs = tfidf.fit_transform(t.split(" ")) str = 'tree cat travellers fruit jupiter' response = tfidf.transform([str]) feature_names = tfidf.get_feature_names() for col in response.nonzero()[1]: print(feature_names[col], ' - ', response[0, col])
这给了我
(0, 28) 0.443509712811 (0, 27) 0.517461475101 (0, 8) 0.517461475101 (0, 6) 0.517461475101 tree - 0.443509712811 travellers - 0.517461475101 jupiter - 0.517461475101 fruit - 0.517461475101
这很好.对于任何新文档,有没有办法获得最高tfidf得分的前n项?
你必须做一些歌曲和舞蹈,以使矩阵成为numpy数组,但这应该做你正在寻找的:
feature_array = np.array(tfidf.get_feature_names()) tfidf_sorting = np.argsort(response.toarray()).flatten()[::-1] n = 3 top_n = feature_array[tfidf_sorting][:n]
这给了我:
array([u'fruit', u'travellers', u'jupiter'], dtype='这个
argsort
电话真的是有用的,这里是它的文档.我们必须这样做,[::-1]
因为argsort
只支持从小到大的排序.我们调用flatten
将尺寸减小到1d,以便排序的索引可用于索引1d特征数组.请注意,包含调用flatten
仅在您一次测试一个文档时才有效.另外,另一方面,你的意思是什么
tfs = tfidf.fit_transform(t.split("\n\n"))
?否则,多行字符串中的每个术语都被视为"文档".\n\n
相反,使用意味着我们实际上正在查看4个文档(每行一个),这在考虑tfidf时更有意义.