我可以使用一些伪代码,或者更好的Python.我正在尝试为Python IRC机器人实现速率限制队列,它部分工作,但如果有人触发的消息少于限制(例如,速率限制是每8秒5条消息,而此人只触发4条消息),并且下一个触发器超过8秒(例如,16秒之后),机器人发送消息,但是队列变满并且机器人等待8秒,即使自8秒时间段已经过去也不需要它.
这里是最简单的算法,如果您只想在消息到达太快时丢弃它们(而不是排队它们,这是有道理的,因为队列可能会变得任意大):
rate = 5.0; // unit: messages per = 8.0; // unit: seconds allowance = rate; // unit: messages last_check = now(); // floating-point, e.g. usec accuracy. Unit: seconds when (message_received): current = now(); time_passed = current - last_check; last_check = current; allowance += time_passed * (rate / per); if (allowance > rate): allowance = rate; // throttle if (allowance < 1.0): discard_message(); else: forward_message(); allowance -= 1.0;
在这个解决方案中没有数据结构,定时器等,它干净利落地工作:)为了看到这一点,'allowance'最多以每秒5/8单位的速度增长,即每8秒最多5个单位.转发的每条消息都会扣除一个单元,因此每八秒钟不能发送五条以上的消息.
请注意,rate
应该是一个整数,即没有非零小数部分,否则算法将无法正常工作(实际速率不会rate/per
).例如rate=0.5; per=1.0;
不起作用,因为allowance
永远不会增长到1.0.但rate=1.0; per=2.0;
工作正常.
在排队的函数之前使用此装饰器@RateLimited(ratepersec).
基本上,这会检查自上次以来是否已经过1 /速率秒,如果没有,则等待剩余的时间,否则它不会等待.这实际上限制了你的速率/秒.装饰器可以应用于您想要的速率限制的任何功能.
在您的情况下,如果您希望每8秒最多发送5条消息,请在sendToQueue函数之前使用@RateLimited(0.625).
import time def RateLimited(maxPerSecond): minInterval = 1.0 / float(maxPerSecond) def decorate(func): lastTimeCalled = [0.0] def rateLimitedFunction(*args,**kargs): elapsed = time.clock() - lastTimeCalled[0] leftToWait = minInterval - elapsed if leftToWait>0: time.sleep(leftToWait) ret = func(*args,**kargs) lastTimeCalled[0] = time.clock() return ret return rateLimitedFunction return decorate @RateLimited(2) # 2 per second at most def PrintNumber(num): print num if __name__ == "__main__": print "This should print 1,2,3... at about 2 per second." for i in range(1,100): PrintNumber(i)
令牌桶实现起来相当简单.
从带有5个令牌的桶开始.
每5/8秒:如果存储桶少于5个令牌,请添加一个.
每次要发送消息时:如果存储桶有≥1个令牌,请取出一个令牌并发送消息.否则,等待/删除消息/等等.
(显然,在实际代码中,你使用整数计数器而不是真实的标记,你可以通过存储时间戳来优化每5/8步骤)
再次阅读问题,如果速率限制每8秒完全重置一次,那么这里是一个修改:
以时间戳开始,last_send
很久以前(例如,在纪元).此外,从相同的5令牌桶开始.
每5/8秒执行一次规则.
每次发送消息时:首先,检查是否last_send
≥8秒前.如果是这样,请填充桶(将其设置为5个令牌).其次,如果存储桶中有令牌,则发送消息(否则,丢弃/等待/等).第三,设置last_send
为现在.
这应该适用于那种情况.
我实际上是用这样的策略编写了一个IRC机器人(第一种方法).它在Perl中,而不是Python,但这里有一些代码来说明:
这里的第一部分处理向桶添加令牌.您可以看到基于时间(第2行到最后一行)添加令牌的优化,然后最后一行将桶内容限制为最大值(MESSAGE_BURST)
my $start_time = time;
...
# Bucket handling
my $bucket = $conn->{fujiko_limit_bucket};
my $lasttx = $conn->{fujiko_limit_lasttx};
$bucket += ($start_time-$lasttx)/MESSAGE_INTERVAL;
($bucket <= MESSAGE_BURST) or $bucket = MESSAGE_BURST;
$ conn是一种传递的数据结构.这是在一个常规运行的方法中(它计算下次有什么事情要做,并且长时间睡眠或直到它获得网络流量).该方法的下一部分处理发送.它相当复杂,因为消息具有与之相关的优先级.
# Queue handling. Start with the ultimate queue.
my $queues = $conn->{fujiko_queues};
foreach my $entry (@{$queues->[PRIORITY_ULTIMATE]}) {
# Ultimate is special. We run ultimate no matter what. Even if
# it sends the bucket negative.
--$bucket;
$entry->{code}(@{$entry->{args}});
}
$queues->[PRIORITY_ULTIMATE] = [];
这是第一个队列,无论如何都会运行.即使它让我们的连接因洪水而死亡.用于非常重要的事情,比如响应服务器的PING.接下来,其余的队列:
# Continue to the other queues, in order of priority.
QRUN: for (my $pri = PRIORITY_HIGH; $pri >= PRIORITY_JUNK; --$pri) {
my $queue = $queues->[$pri];
while (scalar(@$queue)) {
if ($bucket < 1) {
# continue later.
$need_more_time = 1;
last QRUN;
} else {
--$bucket;
my $entry = shift @$queue;
$entry->{code}(@{$entry->{args}});
}
}
}
最后,存储桶状态被保存回$ conn数据结构(实际上稍晚于该方法;它首先计算它将在多长时间内完成更多工作)
# Save status.
$conn->{fujiko_limit_bucket} = $bucket;
$conn->{fujiko_limit_lasttx} = $start_time;
如您所见,实际的铲斗处理代码非常小 - 大约四行.其余代码是优先级队列处理.机器人具有优先级队列,例如,与之聊天的人不能阻止它执行其重要的启动/禁令职责.
阻止处理直到可以发送消息,从而排队进一步消息,antti的漂亮解决方案也可以像这样修改:
rate = 5.0; // unit: messages per = 8.0; // unit: seconds allowance = rate; // unit: messages last_check = now(); // floating-point, e.g. usec accuracy. Unit: seconds when (message_received): current = now(); time_passed = current - last_check; last_check = current; allowance += time_passed * (rate / per); if (allowance > rate): allowance = rate; // throttle if (allowance < 1.0): time.sleep( (1-allowance) * (per/rate)) forward_message(); allowance = 0.0; else: forward_message(); allowance -= 1.0;
它只是等到有足够的余量发送消息.为了不以两倍的速率开始,补贴也可以用0初始化.