编辑:这个谜题也被称为"爱因斯坦的谜语"
该谁拥有斑马(你可以试试这里的网络版)是一款经典的一套谜题的一个例子,我敢打赌,大多数人对堆栈溢出可以用纸笔解决它.但程序化解决方案会是什么样子?
基于下面列出的线索......
有五个房子.
每栋房屋都有自己独特的颜色.
所有房主都是不同国籍的.
他们都有不同的宠物.
他们都喝不同的饮料.
他们都抽不同的香烟.
英国人住在红房子里.
瑞典人有一只狗.
丹麦人喝茶.
温室位于白宫的左侧.
他们在温室里喝咖啡.
抽烟Pall Mall的男人有鸟.
他们在黄屋里吸烟登喜路.
在中间的房子里,他们喝牛奶.
挪威人居住在第一所房子里.
吸烟的男人住在房子旁边的房子里和猫咪住在一起.
在房子旁边的房子里,他们有一匹马,他们吸烟登喜路.
抽烟师傅的男人喝啤酒.
德国人抽烟王子.
挪威人住在蓝屋旁边.
他们在房子旁边的房子里喝水,他们吸烟混合.
谁拥有斑马?
这是基于约束编程的Python解决方案:
from constraint import AllDifferentConstraint, InSetConstraint, Problem
# variables
colors = "blue red green white yellow".split()
nationalities = "Norwegian German Dane Swede English".split()
pets = "birds dog cats horse zebra".split()
drinks = "tea coffee milk beer water".split()
cigarettes = "Blend, Prince, Blue Master, Dunhill, Pall Mall".split(", ")
# There are five houses.
minn, maxn = 1, 5
problem = Problem()
# value of a variable is the number of a house with corresponding property
variables = colors + nationalities + pets + drinks + cigarettes
problem.addVariables(variables, range(minn, maxn+1))
# Each house has its own unique color.
# All house owners are of different nationalities.
# They all have different pets.
# They all drink different drinks.
# They all smoke different cigarettes.
for vars_ in (colors, nationalities, pets, drinks, cigarettes):
problem.addConstraint(AllDifferentConstraint(), vars_)
# In the middle house they drink milk.
#NOTE: interpret "middle" in a numerical sense (not geometrical)
problem.addConstraint(InSetConstraint([(minn + maxn) // 2]), ["milk"])
# The Norwegian lives in the first house.
#NOTE: interpret "the first" as a house number
problem.addConstraint(InSetConstraint([minn]), ["Norwegian"])
# The green house is on the left side of the white house.
#XXX: what is "the left side"? (linear, circular, two sides, 2D house arrangment)
#NOTE: interpret it as 'green house number' + 1 == 'white house number'
problem.addConstraint(lambda a,b: a+1 == b, ["green", "white"])
def add_constraints(constraint, statements, variables=variables, problem=problem):
for stmt in (line for line in statements if line.strip()):
problem.addConstraint(constraint, [v for v in variables if v in stmt])
and_statements = """
They drink coffee in the green house.
The man who smokes Pall Mall has birds.
The English man lives in the red house.
The Dane drinks tea.
In the yellow house they smoke Dunhill.
The man who smokes Blue Master drinks beer.
The German smokes Prince.
The Swede has a dog.
""".split("\n")
add_constraints(lambda a,b: a == b, and_statements)
nextto_statements = """
The man who smokes Blend lives in the house next to the house with cats.
In the house next to the house where they have a horse, they smoke Dunhill.
The Norwegian lives next to the blue house.
They drink water in the house next to the house where they smoke Blend.
""".split("\n")
#XXX: what is "next to"? (linear, circular, two sides, 2D house arrangment)
add_constraints(lambda a,b: abs(a - b) == 1, nextto_statements)
def solve(variables=variables, problem=problem):
from itertools import groupby
from operator import itemgetter
# find & print solutions
for solution in problem.getSolutionIter():
for key, group in groupby(sorted(solution.iteritems(), key=itemgetter(1)), key=itemgetter(1)):
print key,
for v in sorted(dict(group).keys(), key=variables.index):
print v.ljust(9),
print
if __name__ == '__main__':
solve()
输出:
1 yellow Norwegian cats water Dunhill
2 blue Dane horse tea Blend
3 red English birds milk Pall Mall
4 green German zebra coffee Prince
5 white Swede dog beer Blue Master
找到解决方案需要0.6秒(CPU 1.5GHz).
答案是"德国人拥有斑马".
要通过以下方式安装constraint
模块pip
:pip install python-constraint
要手动安装:
下载:
$ wget https://pypi.python.org/packages/source/p/python-constraint/python-constraint-1.2.tar.bz2#md5=d58de49c85992493db53fcb59b9a0a45
extract(Linux/Mac/BSD):
$ bzip2 -cd python-constraint-1.2.tar.bz2 | tar xvf -
提取(Windows,7zip):
> 7z e python-constraint-1.2.tar.bz2
> 7z e python-constraint-1.2.tar
安装:
$ cd python-constraint-1.2
$ python setup.py install
在Prolog中,我们可以通过从中选择元素来实例化域:)(为了提高效率,进行互斥选择).使用SWI-Prolog,
select([A|As],S):- select(A,S,S1),select(As,S1).
select([],_).
left_of(A,B,C):- append(_,[A,B|_],C).
next_to(A,B,C):- left_of(A,B,C) ; left_of(B,A,C).
zebra(Owns, HS):- % house: color,nation,pet,drink,smokes
HS = [ h(_,norwegian,_,_,_), h(blue,_,_,_,_), h(_,_,_,milk,_), _, _],
select([ h(red,brit,_,_,_), h(_,swede,dog,_,_),
h(_,dane,_,tea,_), h(_,german,_,_,prince)], HS),
select([ h(_,_,birds,_,pallmall), h(yellow,_,_,_,dunhill),
h(_,_,_,beer,bluemaster)], HS),
left_of( h(green,_,_,coffee,_), h(white,_,_,_,_), HS),
next_to( h(_,_,_,_,dunhill), h(_,_,horse,_,_), HS),
next_to( h(_,_,_,_,blend), h(_,_,cats, _,_), HS),
next_to( h(_,_,_,_,blend), h(_,_,_,water,_), HS),
member( h(_,Owns,zebra,_,_), HS).
立即运行:
?- time( (zebra(Who,HS), writeln(Who), nl, maplist(writeln,HS), nl, false
; writeln('no more solutions!') )).
german
h( yellow, norwegian, cats, water, dunhill )
h( blue, dane, horse, tea, blend )
h( red, brit, birds, milk, pallmall )
h( green, german, zebra, coffee, prince ) % formatted by hand
h( white, swede, dog, beer, bluemaster)
no more solutions!
% 1,706 inferences, 0.000 CPU in 0.070 seconds (0% CPU, Infinite Lips)
true.
一张海报已经提到Prolog是一个潜在的解决方案.这是事实,这是我将使用的解决方案.更一般地说,这是自动推理系统的完美问题.Prolog是一种形成这种系统的逻辑编程语言(和相关的解释器).它基本上允许从使用一阶逻辑的陈述中得出事实.FOL基本上是一种更高级的命题逻辑形式.如果您决定不想使用Prolog,您可以使用类似于modus ponens的技术使用您自己创建的类似系统来执行得出结论.
当然,你需要添加一些关于斑马的规则,因为它在任何地方都没有提到......我相信你的目的是找出其他4只宠物,从而推断最后一只是斑马?您需要添加规则,说明斑马是宠物之一,每个房子只能有一只宠物.将这种"常识"知识引入推理系统是将该技术用作真正的AI的主要障碍.有一些研究项目,如Cyc,试图通过暴力来提供这种常识.他们遇到了一些有趣的成功.
SWI-Prolog兼容:
% NOTE - This may or may not be more efficent. A bit verbose, though. left_side(L, R, [L, R, _, _, _]). left_side(L, R, [_, L, R, _, _]). left_side(L, R, [_, _, L, R, _]). left_side(L, R, [_, _, _, L, R]). next_to(X, Y, Street) :- left_side(X, Y, Street). next_to(X, Y, Street) :- left_side(Y, X, Street). m(X, Y) :- member(X, Y). get_zebra(Street, Who) :- Street = [[C1, N1, P1, D1, S1], [C2, N2, P2, D2, S2], [C3, N3, P3, D3, S3], [C4, N4, P4, D4, S4], [C5, N5, P5, D5, S5]], m([red, english, _, _, _], Street), m([_, swede, dog, _, _], Street), m([_, dane, _, tea, _], Street), left_side([green, _, _, _, _], [white, _, _, _, _], Street), m([green, _, _, coffee, _], Street), m([_, _, birds, _, pallmall], Street), m([yellow, _, _, _, dunhill], Street), D3 = milk, N1 = norwegian, next_to([_, _, _, _, blend], [_, _, cats, _, _], Street), next_to([_, _, horse, _, _], [_, _, _, _, dunhill], Street), m([_, _, _, beer, bluemaster], Street), m([_, german, _, _, prince], Street), next_to([_, norwegian, _, _, _], [blue, _, _, _, _], Street), next_to([_, _, _, water, _], [_, _, _, _, blend], Street), m([_, Who, zebra, _, _], Street).
在翻译:
?- get_zebra(Street, Who). Street = ... Who = german
这是我如何去做的.首先,我将生成所有有序的n元组
(housenumber, color, nationality, pet, drink, smoke)
其中5 ^ 6,15625,易于管理.然后我将过滤掉简单的布尔条件.其中有十个,你希望过滤出8/25个条件(1/25的条件包含一个带狗的瑞典人,16/25包含非瑞典人和非狗) .当然,他们并不是独立的,但在过滤掉那些之后,不应该有很多.
在那之后,你有一个很好的图形问题.创建一个图表,每个节点代表剩余的n元组之一.如果两端在某些n元组位置包含重复项或违反任何"位置"约束(其中有五个),则向图形添加边.从那里你几乎回家,在图表中搜索一组独立的五个节点(没有任何节点通过边连接).如果没有太多,你可能只需要详尽地生成所有5元组的n元组,然后再过滤它们.
这可能是代码高尔夫的一个很好的候选人.有人可以用像haskell这样的东西在一行中解决它:)
事后补充:初始过滤器传递也可以消除位置约束的信息.不多(1/25),但仍然很重要.
另一个Python解决方案,这次使用Python的PyKE(Python知识引擎).当然,它比@JFSebastian在解决方案中使用Python的"约束"模块更加冗长,但它为任何寻找这类问题的原始知识引擎的人提供了一个有趣的比较.
clues.kfb
categories( POSITION, 1, 2, 3, 4, 5 ) # There are five houses. categories( HOUSE_COLOR, blue, red, green, white, yellow ) # Each house has its own unique color. categories( NATIONALITY, Norwegian, German, Dane, Swede, English ) # All house owners are of different nationalities. categories( PET, birds, dog, cats, horse, zebra ) # They all have different pets. categories( DRINK, tea, coffee, milk, beer, water ) # They all drink different drinks. categories( SMOKE, Blend, Prince, 'Blue Master', Dunhill, 'Pall Mall' ) # They all smoke different cigarettes. related( NATIONALITY, English, HOUSE_COLOR, red ) # The English man lives in the red house. related( NATIONALITY, Swede, PET, dog ) # The Swede has a dog. related( NATIONALITY, Dane, DRINK, tea ) # The Dane drinks tea. left_of( HOUSE_COLOR, green, HOUSE_COLOR, white ) # The green house is on the left side of the white house. related( DRINK, coffee, HOUSE_COLOR, green ) # They drink coffee in the green house. related( SMOKE, 'Pall Mall', PET, birds ) # The man who smokes Pall Mall has birds. related( SMOKE, Dunhill, HOUSE_COLOR, yellow ) # In the yellow house they smoke Dunhill. related( POSITION, 3, DRINK, milk ) # In the middle house they drink milk. related( NATIONALITY, Norwegian, POSITION, 1 ) # The Norwegian lives in the first house. next_to( SMOKE, Blend, PET, cats ) # The man who smokes Blend lives in the house next to the house with cats. next_to( SMOKE, Dunhill, PET, horse ) # In the house next to the house where they have a horse, they smoke Dunhill. related( SMOKE, 'Blue Master', DRINK, beer ) # The man who smokes Blue Master drinks beer. related( NATIONALITY, German, SMOKE, Prince ) # The German smokes Prince. next_to( NATIONALITY, Norwegian, HOUSE_COLOR, blue ) # The Norwegian lives next to the blue house. next_to( DRINK, water, SMOKE, Blend ) # They drink water in the house next to the house where they smoke Blend.
relations.krb
############# # Categories # Foreach set of categories, assert each type categories foreach clues.categories($category, $thing1, $thing2, $thing3, $thing4, $thing5) assert clues.is_category($category, $thing1) clues.is_category($category, $thing2) clues.is_category($category, $thing3) clues.is_category($category, $thing4) clues.is_category($category, $thing5) ######################### # Inverse Relationships # Foreach A=1, assert 1=A inverse_relationship_positive foreach clues.related($category1, $thing1, $category2, $thing2) assert clues.related($category2, $thing2, $category1, $thing1) # Foreach A!1, assert 1!A inverse_relationship_negative foreach clues.not_related($category1, $thing1, $category2, $thing2) assert clues.not_related($category2, $thing2, $category1, $thing1) # Foreach "A beside B", assert "B beside A" inverse_relationship_beside foreach clues.next_to($category1, $thing1, $category2, $thing2) assert clues.next_to($category2, $thing2, $category1, $thing1) ########################### # Transitive Relationships # Foreach A=1 and 1=a, assert A=a transitive_positive foreach clues.related($category1, $thing1, $category2, $thing2) clues.related($category2, $thing2, $category3, $thing3) check unique($thing1, $thing2, $thing3) \ and unique($category1, $category2, $category3) assert clues.related($category1, $thing1, $category3, $thing3) # Foreach A=1 and 1!a, assert A!a transitive_negative foreach clues.related($category1, $thing1, $category2, $thing2) clues.not_related($category2, $thing2, $category3, $thing3) check unique($thing1, $thing2, $thing3) \ and unique($category1, $category2, $category3) assert clues.not_related($category1, $thing1, $category3, $thing3) ########################## # Exclusive Relationships # Foreach A=1, assert A!2 and A!3 and A!4 and A!5 if_one_related_then_others_unrelated foreach clues.related($category, $thing, $category_other, $thing_other) check unique($category, $category_other) clues.is_category($category_other, $thing_not_other) check unique($thing, $thing_other, $thing_not_other) assert clues.not_related($category, $thing, $category_other, $thing_not_other) # Foreach A!1 and A!2 and A!3 and A!4, assert A=5 if_four_unrelated_then_other_is_related foreach clues.not_related($category, $thing, $category_other, $thingA) clues.not_related($category, $thing, $category_other, $thingB) check unique($thingA, $thingB) clues.not_related($category, $thing, $category_other, $thingC) check unique($thingA, $thingB, $thingC) clues.not_related($category, $thing, $category_other, $thingD) check unique($thingA, $thingB, $thingC, $thingD) # Find the fifth variation of category_other. clues.is_category($category_other, $thingE) check unique($thingA, $thingB, $thingC, $thingD, $thingE) assert clues.related($category, $thing, $category_other, $thingE) ################### # Neighbors: Basic # Foreach "A left of 1", assert "A beside 1" expanded_relationship_beside_left foreach clues.left_of($category1, $thing1, $category2, $thing2) assert clues.next_to($category1, $thing1, $category2, $thing2) # Foreach "A beside 1", assert A!1 unrelated_to_beside foreach clues.next_to($category1, $thing1, $category2, $thing2) check unique($category1, $category2) assert clues.not_related($category1, $thing1, $category2, $thing2) ################################### # Neighbors: Spatial Relationships # Foreach "A beside B" and "A=(at-edge)", assert "B=(near-edge)" check_next_to_either_edge foreach clues.related(POSITION, $position_known, $category, $thing) check is_edge($position_known) clues.next_to($category, $thing, $category_other, $thing_other) clues.is_category(POSITION, $position_other) check is_beside($position_known, $position_other) assert clues.related(POSITION, $position_other, $category_other, $thing_other) # Foreach "A beside B" and "A!(near-edge)" and "B!(near-edge)", assert "A!(at-edge)" check_too_close_to_edge foreach clues.next_to($category, $thing, $category_other, $thing_other) clues.is_category(POSITION, $position_edge) clues.is_category(POSITION, $position_near_edge) check is_edge($position_edge) and is_beside($position_edge, $position_near_edge) clues.not_related(POSITION, $position_near_edge, $category, $thing) clues.not_related(POSITION, $position_near_edge, $category_other, $thing_other) assert clues.not_related(POSITION, $position_edge, $category, $thing) # Foreach "A beside B" and "A!(one-side)", assert "A=(other-side)" check_next_to_with_other_side_impossible foreach clues.next_to($category, $thing, $category_other, $thing_other) clues.related(POSITION, $position_known, $category_other, $thing_other) check not is_edge($position_known) clues.not_related($category, $thing, POSITION, $position_one_side) check is_beside($position_known, $position_one_side) clues.is_category(POSITION, $position_other_side) check is_beside($position_known, $position_other_side) \ and unique($position_known, $position_one_side, $position_other_side) assert clues.related($category, $thing, POSITION, $position_other_side) # Foreach "A left of B"... # ... and "C=(position1)" and "D=(position2)" and "E=(position3)" # ~> assert "A=(other-position)" and "B=(other-position)+1" left_of_and_only_two_slots_remaining foreach clues.left_of($category_left, $thing_left, $category_right, $thing_right) clues.related($category_left, $thing_left_other1, POSITION, $position1) clues.related($category_left, $thing_left_other2, POSITION, $position2) clues.related($category_left, $thing_left_other3, POSITION, $position3) check unique($thing_left, $thing_left_other1, $thing_left_other2, $thing_left_other3) clues.related($category_right, $thing_right_other1, POSITION, $position1) clues.related($category_right, $thing_right_other2, POSITION, $position2) clues.related($category_right, $thing_right_other3, POSITION, $position3) check unique($thing_right, $thing_right_other1, $thing_right_other2, $thing_right_other3) clues.is_category(POSITION, $position4) clues.is_category(POSITION, $position5) check is_left_right($position4, $position5) \ and unique($position1, $position2, $position3, $position4, $position5) assert clues.related(POSITION, $position4, $category_left, $thing_left) clues.related(POSITION, $position5, $category_right, $thing_right) ######################### fc_extras def unique(*args): return len(args) == len(set(args)) def is_edge(pos): return (pos == 1) or (pos == 5) def is_beside(pos1, pos2): diff = (pos1 - pos2) return (diff == 1) or (diff == -1) def is_left_right(pos_left, pos_right): return (pos_right - pos_left == 1)
driver.py(实际上更大,但这是本质)
from pyke import knowledge_engine engine = knowledge_engine.engine(__file__) engine.activate('relations') try: natl = engine.prove_1_goal('clues.related(PET, zebra, NATIONALITY, $nationality)')[0].get('nationality') except Exception, e: natl = "Unknown" print "== Who owns the zebra? %s ==" % natl
样本输出:
$ python driver.py == Who owns the zebra? German == # Color Nationality Pet Drink Smoke ======================================================= 1 yellow Norwegian cats water Dunhill 2 blue Dane horse tea Blend 3 red English birds milk Pall Mall 4 green German zebra coffee Prince 5 white Swede dog beer Blue Master Calculated in 1.19 seconds.
资料来源:https://github.com/DreadPirateShawn/pyke-who-owns-zebra
以下是使用NSolver的完整解决方案的摘录,发布于C#的爱因斯坦谜语:
// The green house's owner drinks coffee
Post(greenHouse.Eq(coffee));
// The person who smokes Pall Mall rears birds
Post(pallMall.Eq(birds));
// The owner of the yellow house smokes Dunhill
Post(yellowHouse.Eq(dunhill));
这是CLP(FD)中的直接解决方案(另请参阅clpfd):
:- use_module(library(clpfd)).
solve(ZebraOwner) :-
maplist( init_dom(1..5),
[[British, Swedish, Danish, Norwegian, German], % Nationalities
[Red, Green, Blue, White, Yellow], % Houses
[Tea, Coffee, Milk, Beer, Water], % Beverages
[PallMall, Blend, Prince, Dunhill, BlueMaster], % Cigarettes
[Dog, Birds, Cats, Horse, Zebra]]), % Pets
British #= Red, % Hint 1
Swedish #= Dog, % Hint 2
Danish #= Tea, % Hint 3
Green #= White - 1 , % Hint 4
Green #= Coffee, % Hint 5
PallMall #= Birds, % Hint 6
Yellow #= Dunhill, % Hint 7
Milk #= 3, % Hint 8
Norwegian #= 1, % Hint 9
neighbor(Blend, Cats), % Hint 10
neighbor(Horse, Dunhill), % Hint 11
BlueMaster #= Beer, % Hint 12
German #= Prince, % Hint 13
neighbor(Norwegian, Blue), % Hint 14
neighbor(Blend, Water), % Hint 15
memberchk(Zebra-ZebraOwner, [British-british, Swedish-swedish, Danish-danish,
Norwegian-norwegian, German-german]).
init_dom(R, L) :-
all_distinct(L),
L ins R.
neighbor(X, Y) :-
(X #= (Y - 1)) #\/ (X #= (Y + 1)).
运行它,产生:
3? - 时间(求解(Z)).
%111,798次推断,0.016秒内0.016 CPU(78%CPU,7166493 Lips)
Z =德语.
在PAIP(第11章)中,Norvig使用Lisp中嵌入的Prolog解决了斑马拼图.
有很多ES6发电机和一点点的lodash.你需要Babel才能运行它.
var _ = require('lodash');
function canBe(house, criteria) {
for (const key of Object.keys(criteria))
if (house[key] && house[key] !== criteria[key])
return false;
return true;
}
function* thereShouldBe(criteria, street) {
for (const i of _.range(street.length))
yield* thereShouldBeAtIndex(criteria, i, street);
}
function* thereShouldBeAtIndex(criteria, index, street) {
if (canBe(street[index], criteria)) {
const newStreet = _.cloneDeep(street);
newStreet[index] = _.assign({}, street[index], criteria);
yield newStreet;
}
}
function* leftOf(critA, critB, street) {
for (const i of _.range(street.length - 1)) {
if (canBe(street[i], critA) && canBe(street[i+1], critB)) {
const newStreet = _.cloneDeep(street);
newStreet[i ] = _.assign({}, street[i ], critA);
newStreet[i+1] = _.assign({}, street[i+1], critB);
yield newStreet;
}
}
}
function* nextTo(critA, critB, street) {
yield* leftOf(critA, critB, street);
yield* leftOf(critB, critA, street);
}
const street = [{}, {}, {}, {}, {}]; // five houses
// Btw: it turns out we don't need uniqueness constraint.
const constraints = [
s => thereShouldBe({nation: 'English', color: 'red'}, s),
s => thereShouldBe({nation: 'Swede', animal: 'dog'}, s),
s => thereShouldBe({nation: 'Dane', drink: 'tea'}, s),
s => leftOf({color: 'green'}, {color: 'white'}, s),
s => thereShouldBe({drink: 'coffee', color: 'green'}, s),
s => thereShouldBe({cigarettes: 'PallMall', animal: 'birds'}, s),
s => thereShouldBe({color: 'yellow', cigarettes: 'Dunhill'}, s),
s => thereShouldBeAtIndex({drink: 'milk'}, 2, s),
s => thereShouldBeAtIndex({nation: 'Norwegian'}, 0, s),
s => nextTo({cigarettes: 'Blend'}, {animal: 'cats'}, s),
s => nextTo({animal: 'horse'}, {cigarettes: 'Dunhill'}, s),
s => thereShouldBe({cigarettes: 'BlueMaster', drink: 'beer'}, s),
s => thereShouldBe({nation: 'German', cigarettes: 'Prince'}, s),
s => nextTo({nation: 'Norwegian'}, {color: 'blue'}, s),
s => nextTo({drink: 'water'}, {cigarettes: 'Blend'}, s),
s => thereShouldBe({animal: 'zebra'}, s), // should be somewhere
];
function* findSolution(remainingConstraints, street) {
if (remainingConstraints.length === 0)
yield street;
else
for (const newStreet of _.head(remainingConstraints)(street))
yield* findSolution(_.tail(remainingConstraints), newStreet);
}
for (const streetSolution of findSolution(constraints, street)) {
console.log(streetSolution);
}
结果:
[ { color: 'yellow',
cigarettes: 'Dunhill',
nation: 'Norwegian',
animal: 'cats',
drink: 'water' },
{ nation: 'Dane',
drink: 'tea',
cigarettes: 'Blend',
animal: 'horse',
color: 'blue' },
{ nation: 'English',
color: 'red',
cigarettes: 'PallMall',
animal: 'birds',
drink: 'milk' },
{ color: 'green',
drink: 'coffee',
nation: 'German',
cigarettes: 'Prince',
animal: 'zebra' },
{ nation: 'Swede',
animal: 'dog',
color: 'white',
cigarettes: 'BlueMaster',
drink: 'beer' } ]
我的运行时间大约是2.5秒,但是通过改变规则的顺序可以大大改善.为了清晰起见,我决定保留原始订单.
谢谢,这是一个很酷的挑战!