当前位置:  开发笔记 > 编程语言 > 正文

用Java编写的GA

如何解决《用Java编写的GA》经验,为你挑选了1个好方法。

我试图根据我从"用于游戏程序员的AI技术"一书中选择的技术编写遗传算法,该技术使用二进制编码和适应度比例选择(也称为轮盘赌选择)对人群的基因进行在程序中以二维数组随机生成.

我最近遇到了一个伪代码,并试图实现它,但是我遇到了一些问题,我需要做些什么.我检查过一些书籍和一些开源代码,但仍在努力取得进展.我明白我必须得到总人口的总体适应度的总和,在总和与零之间选择一个随机数,然后如果数字大于父母要覆盖它,但我正在努力实施这些想法.

由于我的Java生疏,因此非常感谢任何帮助实现这些想法.



1> Amro..:

以下是GA的完整概述.我确保非常详细,因此可以很容易地编码为C/Java/Python/..

/* 1. Init population */
POP_SIZE = number of individuals in the population
pop = newPop = []
for i=1 to POP_SIZE {
    pop.add( getRandomIndividual() )
}

/* 2. evaluate current population */
totalFitness = 0
for i=1 to POP_SIZE {
    fitness = pop[i].evaluate()
    totalFitness += fitness
}

while not end_condition (best fitness, #iterations, no improvement...)
{
    // build new population
    // optional: Elitism: copy best K from current pop to newPop
    while newPop.size()0; idx++) {
            rnd -= pop[idx].fitness
        }
        indiv1 = pop[idx-1]
        // select 2nd individual
        rnd = getRandomDouble([0,1]) * totalFitness
        for(idx=0; idx0; idx++) {
            rnd -= pop[idx].fitness
        }
        indiv2 = pop[idx-1]

        /* 4. crossover */
        indiv1, indiv2 = crossover(indiv1, indiv2)

        /* 5. mutation */
        indiv1.mutate()
        indiv2.mutate()

        // add to new population
        newPop.add(indiv1)
        newPop.add(indiv2)
    }
    pop = newPop
    newPop = []

    /* re-evaluate current population */
    totalFitness = 0
    for i=1 to POP_SIZE {
        fitness = pop[i].evaluate()
        totalFitness += fitness
    }
}

// return best genome
bestIndividual = pop.bestIndiv()     // max/min fitness indiv

请注意,目前您缺少适应度函数(取决于域).交叉将是一个简单的单点交叉(因为您使用的是二进制表示).突变可以是随机的一点点简单的翻转.


编辑:我已经在Java中实现了上面的伪代码考虑到你当前的代码结构和符号(请记住,我比ac/c ++更多的是java).请注意,这绝不是最有效或最完整的实现,我承认我写得很快:

Individual.java

import java.util.Random;

public class Individual
{
    public static final int SIZE = 500;
    private int[] genes = new int[SIZE];
    private int fitnessValue;

    public Individual() {}

    public int getFitnessValue() {
        return fitnessValue;
    }

    public void setFitnessValue(int fitnessValue) {
        this.fitnessValue = fitnessValue;
    }

    public int getGene(int index) {
        return genes[index];
    }

    public void setGene(int index, int gene) {
        this.genes[index] = gene;
    }

    public void randGenes() {
        Random rand = new Random();
        for(int i=0; i

Population.java

import java.util.Random;

public class Population
{
    final static int ELITISM_K = 5;
    final static int POP_SIZE = 200 + ELITISM_K;  // population size
    final static int MAX_ITER = 2000;             // max number of iterations
    final static double MUTATION_RATE = 0.05;     // probability of mutation
    final static double CROSSOVER_RATE = 0.7;     // probability of crossover

    private static Random m_rand = new Random();  // random-number generator
    private Individual[] m_population;
    private double totalFitness;

    public Population() {
        m_population = new Individual[POP_SIZE];

        // init population
        for (int i = 0; i < POP_SIZE; i++) {
            m_population[i] = new Individual();
            m_population[i].randGenes();
        }

        // evaluate current population
        this.evaluate();
    }

    public void setPopulation(Individual[] newPop) {
        // this.m_population = newPop;
        System.arraycopy(newPop, 0, this.m_population, 0, POP_SIZE);
    }

    public Individual[] getPopulation() {
        return this.m_population;
    }

    public double evaluate() {
        this.totalFitness = 0.0;
        for (int i = 0; i < POP_SIZE; i++) {
            this.totalFitness += m_population[i].evaluate();
        }
        return this.totalFitness;
    }

    public Individual rouletteWheelSelection() {
        double randNum = m_rand.nextDouble() * this.totalFitness;
        int idx;
        for (idx=0; idx0; ++idx) {
            randNum -= m_population[idx].getFitnessValue();
        }
        return m_population[idx-1];
    }

    public Individual findBestIndividual() {
        int idxMax = 0, idxMin = 0;
        double currentMax = 0.0;
        double currentMin = 1.0;
        double currentVal;

        for (int idx=0; idx currentMax) {
                currentMax = currentVal;
                idxMax = idx;
            }
            if (currentVal < currentMin) {
                currentMin = currentVal;
                idxMin = idx;
            }
        }

        //return m_population[idxMin];      // minimization
        return m_population[idxMax];        // maximization
    }

    public static Individual[] crossover(Individual indiv1,Individual indiv2) {
        Individual[] newIndiv = new Individual[2];
        newIndiv[0] = new Individual();
        newIndiv[1] = new Individual();

        int randPoint = m_rand.nextInt(Individual.SIZE);
        int i;
        for (i=0; i

    
推荐阅读
吻过彩虹的脸_378
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有