当前位置:  开发笔记 > 编程语言 > 正文

有效地从TensorFlow中获取渐变?

如何解决《有效地从TensorFlow中获取渐变?》经验,为你挑选了2个好方法。

我正在尝试使用TensorFlow实现异步参数服务器DistBelief样式.我发现minimize()被分成两个函数,compute_gradients和apply_gradients,所以我的计划是在它们之间插入一个网络边界.我有一个关于如何同时评估所有渐变并将它们全部拉出来的问题.我知道eval只评估必要的子图,但它也只返回一个张量,而不是计算张量所需的张量链.

我怎样才能更有效地做到这一点?我把Deep MNIST的例子作为起点:

import tensorflow as tf
import download_mnist

def weight_variable(shape, name):
   initial = tf.truncated_normal(shape, stddev=0.1)
   return tf.Variable(initial, name=name)

def bias_variable(shape, name):
   initial = tf.constant(0.1, shape=shape)
   return tf.Variable(initial, name=name)

def conv2d(x, W):
   return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
   return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                         strides=[1, 2, 2, 1], padding='SAME')

mnist = download_mnist.read_data_sets('MNIST_data', one_hot=True)
session = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784], name='x')
x_image = tf.reshape(x, [-1,28,28,1], name='reshape')
y_ = tf.placeholder("float", shape=[None, 10], name='y_')
W_conv1 = weight_variable([5, 5, 1, 32], 'W_conv1')
b_conv1 = bias_variable([32], 'b_conv1')
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64], 'W_conv2')
b_conv2 = bias_variable([64], 'b_conv2')
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024], 'W_fc1')
b_fc1 = bias_variable([1024], 'b_fc1')
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float", name='keep_prob')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10], 'W_fc2')
b_fc2 = bias_variable([10], 'b_fc2')
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

loss = -tf.reduce_sum(y_ * tf.log(y_conv))
optimizer = tf.train.AdamOptimizer(1e-4)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
compute_gradients = optimizer.compute_gradients(loss)
session.run(tf.initialize_all_variables())

batch = mnist.train.next_batch(50)
feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}


gradients = []
for grad_var in compute_gradients:
    grad = grad_var[0].eval(feed_dict=feed_dict)
    var = grad_var[1]
    gradients.append((grad, var))

我认为这最后一个循环实际上是多次重新计算最后一个渐变,而第一个渐变只计算一次?如何在不重新计算的情况下抓取所有渐变?



1> myme5261314..:

举个简单的例子吧.理解它并尝试你的具体任务.

初始化所需的符号.

x = tf.Variable(0.5)
y = x*x
opt = tf.train.AdagradOptimizer(0.1)
grads = opt.compute_gradients(y)
grad_placeholder = [(tf.placeholder("float", shape=grad[1].get_shape()), grad[1] for grad in grads]
apply_placeholder_op = opt.apply_gradients(grad_placeholder)
transform_grads = [(function1(grad[0]), grad[1]) for grad in grads]
apply_transform_op = opt.apply_gradients(transform_grads)

初始化

sess = tf.Session()
sess.run(tf.initialize_all_variables())

获得所有渐变

grad_vals = sess.run([grad[0] for grad in grads])

应用渐变

feed_dict = {}
for i in xrange(len(grad_placeholder)):
    feed_dict[grad_placeholder[i][0]] = function2(grad_vals[i])
sess.run(apply_placeholder_op, feed_dict=feed_dict)
sess.run(apply_transform_op)

注意:代码未经我自己测试,但我确认代码是合法的,除了轻微的代码错误.注意:function1和function2是一种计算,如2*x,x ^ e或e ^ x等.

请参阅:远程TensorFlow apply_gradients



2> Pinocchio..:

我编写了一个非常简单的例子,其中包含评论(灵感来自上面的答案),可以看到渐变下降的作用:

import tensorflow as tf

#funciton to transform gradients
def T(g, decay=1.0):
    #return decayed gradient
    return decay*g

# x variable
x = tf.Variable(10.0,name='x')
# b placeholder (simualtes the "data" part of the training)
b = tf.placeholder(tf.float32)
# make model (1/2)(x-b)^2
xx_b = 0.5*tf.pow(x-b,2)
y=xx_b

learning_rate = 1.0
opt = tf.train.GradientDescentOptimizer(learning_rate)
# gradient variable list = [ (gradient,variable) ]
gv = opt.compute_gradients(y,[x])
# transformed gradient variable list = [ (T(gradient),variable) ]
decay = 0.1 # decay the gradient for the sake of the example
tgv = [(T(g,decay=decay),v) for (g,v) in gv] #list [(grad,var)]
# apply transformed gradients (this case no transform)
apply_transform_op = opt.apply_gradients(tgv)
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    epochs = 10
    for i in range(epochs):
        b_val = 1.0 #fake data (in SGD it would be different on every epoch)
        print '----'
        x_before_update = x.eval()
        print 'before update',x_before_update

        # compute gradients
        grad_vals = sess.run([g for (g,v) in gv], feed_dict={b: b_val})
        print 'grad_vals: ',grad_vals
        # applies the gradients
        result = sess.run(apply_transform_op, feed_dict={b: b_val})

        print 'value of x should be: ', x_before_update - T(grad_vals[0], decay=decay)
        x_after_update = x.eval()
        print 'after update', x_after_update

您可以观察变量作为其训练的变化以及梯度的值.请注意,T衰减渐变的唯一原因是,否则它会在1步中达到全局最小值.


作为额外的奖励,如果你想看到它与张量板一起工作,你去吧!:)

## run cmd to collect model: python quadratic_minimizer.py --logdir=/tmp/quaratic_temp
## show board on browser run cmd: tensorboard --logdir=/tmp/quaratic_temp
## browser: http://localhost:6006/

import tensorflow as tf

#funciton to transform gradients
def T(g, decay=1.0):
    #return decayed gradient
    return decay*g

# x variable
x = tf.Variable(10.0,name='x')
# b placeholder (simualtes the "data" part of the training)
b = tf.placeholder(tf.float32)
# make model (1/2)(x-b)^2
xx_b = 0.5*tf.pow(x-b,2)
y=xx_b

learning_rate = 1.0
opt = tf.train.GradientDescentOptimizer(learning_rate)
# gradient variable list = [ (gradient,variable) ]
gv = opt.compute_gradients(y,[x])
# transformed gradient variable list = [ (T(gradient),variable) ]
decay = 0.9 # decay the gradient for the sake of the example
tgv = [ (T(g,decay=decay), v) for (g,v) in gv] #list [(grad,var)]
# apply transformed gradients (this case no transform)
apply_transform_op = opt.apply_gradients(tgv)

(dydx,_) = tgv[0]
x_scalar_summary = tf.scalar_summary("x", x)
grad_scalar_summary = tf.scalar_summary("dydx", dydx)

with tf.Session() as sess:
    merged = tf.merge_all_summaries()
    tensorboard_data_dump = '/tmp/quaratic_temp'
    writer = tf.train.SummaryWriter(tensorboard_data_dump, sess.graph)

    sess.run(tf.initialize_all_variables())
    epochs = 14
    for i in range(epochs):
        b_val = 1.0 #fake data (in SGD it would be different on every epoch)
        print '----'
        x_before_update = x.eval()
        print 'before update',x_before_update

        # get gradients
        #grad_list = [g for (g,v) in gv]
        (summary_str_grad,grad_val) = sess.run([merged] + [dydx], feed_dict={b: b_val})
        grad_vals = sess.run([g for (g,v) in gv], feed_dict={b: b_val})
        print 'grad_vals: ',grad_vals
        writer.add_summary(summary_str_grad, i)

        # applies the gradients
        [summary_str_apply_transform,_] = sess.run([merged,apply_transform_op], feed_dict={b: b_val})
        writer.add_summary(summary_str_apply_transform, i)

        print 'value of x after update should be: ', x_before_update - T(grad_vals[0], decay=decay)
        x_after_update = x.eval()
        print 'after update', x_after_update

推荐阅读
echo7111436
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有