当前位置:  开发笔记 > 编程语言 > 正文

在熊猫中将多列合并为一列

如何解决《在熊猫中将多列合并为一列》经验,为你挑选了1个好方法。

我有一个名为ref(first dataframe)的数据框,其中包含列c1,c2,c3和c4。

ref= pd.DataFrame([[1,3,.3,7],[0,4,.5,4.5],[2,5,.6,3]], columns=['c1','c2','c3','c4'])
print(ref)
   c1  c2   c3   c4
0   1   3  0.3  7.0
1   0   4  0.5  4.5
2   2   5  0.6  3.0

我想创建一个新列,即c5(第二个数据帧),它具有列c1,c2,c3和c4中的所有值。

我试过concat,合并列,但我无法正常工作。

请让我知道您是否有解决方案?



1> jezrael..:

您可以使用unstack用于创建SeriesDataFrameconcat到原:

print (pd.concat([ref, ref.unstack().reset_index(drop=True).rename('c5')], axis=1))
     c1   c2   c3   c4   c5
0   1.0  3.0  0.3  7.0  1.0
1   0.0  4.0  0.5  4.5  0.0
2   2.0  5.0  0.6  3.0  2.0
3   NaN  NaN  NaN  NaN  3.0
4   NaN  NaN  NaN  NaN  4.0
5   NaN  NaN  NaN  NaN  5.0
6   NaN  NaN  NaN  NaN  0.3
7   NaN  NaN  NaN  NaN  0.5
8   NaN  NaN  NaN  NaN  0.6
9   NaN  NaN  NaN  NaN  7.0
10  NaN  NaN  NaN  NaN  4.5
11  NaN  NaN  NaN  NaN  3.0

创建替代的解决方案Series是转换dfnumpy array通过values,然后重塑ravel

    print (pd.concat([ref, pd.Series(ref.values.ravel('F'), name='c5')], axis=1))
         c1   c2   c3   c4   c5
    0   1.0  3.0  0.3  7.0  1.0
    1   0.0  4.0  0.5  4.5  0.0
    2   2.0  5.0  0.6  3.0  2.0
    3   NaN  NaN  NaN  NaN  3.0
    4   NaN  NaN  NaN  NaN  4.0
    5   NaN  NaN  NaN  NaN  5.0
    6   NaN  NaN  NaN  NaN  0.3
    7   NaN  NaN  NaN  NaN  0.5
    8   NaN  NaN  NaN  NaN  0.6
    9   NaN  NaN  NaN  NaN  7.0
    10  NaN  NaN  NaN  NaN  4.5
    11  NaN  NaN  NaN  NaN  3.0

推荐阅读
帆侮听我悄悄说星星
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有