当前位置:  开发笔记 > 编程语言 > 正文

在Java中表示分数的最佳方式?

如何解决《在Java中表示分数的最佳方式?》经验,为你挑选了7个好方法。

我正在尝试使用Java中的分数.

我想实现算术函数.为此,我首先要求一种方法来规范化功能.我知道我不能加1/6和1/2,直到我有一个共同点.我将不得不添加1/6和3/6.一个天真的方法会让我添加2/12和6/12,然后减少.如何实现性能损失最小的共同点?什么算法最适合这个?


版本8(感谢hstoerr):

改进包括:

equals()方法现在与compareTo()方法一致

final class Fraction extends Number {
    private int numerator;
    private int denominator;

    public Fraction(int numerator, int denominator) {
        if(denominator == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if(denominator < 0) {
            numerator *= -1;
            denominator *= -1;
        }
        this.numerator = numerator;
        this.denominator = denominator;
    }

    public Fraction(int numerator) {
        this.numerator = numerator;
        this.denominator = 1;
    }

    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }

    public byte byteValue() {
        return (byte) this.doubleValue();
    }

    public double doubleValue() {
        return ((double) numerator)/((double) denominator);
    }

    public float floatValue() {
        return (float) this.doubleValue();
    }

    public int intValue() {
        return (int) this.doubleValue();
    }

    public long longValue() {
        return (long) this.doubleValue();
    }

    public short shortValue() {
        return (short) this.doubleValue();
    }

    public boolean equals(Fraction frac) {
        return this.compareTo(frac) == 0;
    }

    public int compareTo(Fraction frac) {
        long t = this.getNumerator() * frac.getDenominator();
        long f = frac.getNumerator() * this.getDenominator();
        int result = 0;
        if(t>f) {
            result = 1;
        }
        else if(f>t) {
            result = -1;
        }
        return result;
    }
}

我已删除所有以前的版本.谢谢你:

戴夫雷

克莱图斯

duffymo

詹姆士

米尔豪斯

奥斯卡雷耶斯

杰森S.

Francisco Canedo

歹徒程序员

Beska

Kip.. 61

碰巧我不久前写了一个BigFraction类,用于Project Euler问题.它保留了一个BigInteger分子和分母,因此它永远不会溢出.但是对于你知道永远不会溢出的许多操作来说,这将是一个缓慢的过程..无论如何,如果你想要它,请使用它.我一直渴望以某种方式表明这一点.:)

编辑:此代码的最新版本和最佳版本,包括单元测试现在托管在GitHub上,也可以通过Maven Central获得.我将原始代码保留在此处,以便此答案不仅仅是一个链接......


import java.math.*;

/**
 * Arbitrary-precision fractions, utilizing BigIntegers for numerator and
 * denominator.  Fraction is always kept in lowest terms.  Fraction is
 * immutable, and guaranteed not to have a null numerator or denominator.
 * Denominator will always be positive (so sign is carried by numerator,
 * and a zero-denominator is impossible).
 */
public final class BigFraction extends Number implements Comparable
{
  private static final long serialVersionUID = 1L; //because Number is Serializable
  private final BigInteger numerator;
  private final BigInteger denominator;

  public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
  public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);

  /**
   * Constructs a BigFraction with given numerator and denominator.  Fraction
   * will be reduced to lowest terms.  If fraction is negative, negative sign will
   * be carried on numerator, regardless of how the values were passed in.
   */
  public BigFraction(BigInteger numerator, BigInteger denominator)
  {
    if(numerator == null)
      throw new IllegalArgumentException("Numerator is null");
    if(denominator == null)
      throw new IllegalArgumentException("Denominator is null");
    if(denominator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero.");

    //only numerator should be negative.
    if(denominator.signum() < 0)
    {
      numerator = numerator.negate();
      denominator = denominator.negate();
    }

    //create a reduced fraction
    BigInteger gcd = numerator.gcd(denominator);
    this.numerator = numerator.divide(gcd);
    this.denominator = denominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from a whole number.
   */
  public BigFraction(BigInteger numerator)
  {
    this(numerator, BigInteger.ONE, true);
  }

  public BigFraction(long numerator, long denominator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
  }

  public BigFraction(long numerator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
  }

  /**
   * Constructs a BigFraction from a floating-point number.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  For example, 
   *     System.out.println(new BigFraction(1.1))
   * will print:
   *     2476979795053773/2251799813685248
   * 
   * This is because 1.1 cannot be expressed exactly in binary form.  The
   * given fraction is exactly equal to the internal representation of
   * the double-precision floating-point number.  (Which, for 1.1, is:
   * (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
   * 
   * NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
   * closer to what the user expects.
   */
  public BigFraction(double d)
  {
    if(Double.isInfinite(d))
      throw new IllegalArgumentException("double val is infinite");
    if(Double.isNaN(d))
      throw new IllegalArgumentException("double val is NaN");

    //special case - math below won't work right for 0.0 or -0.0
    if(d == 0)
    {
      numerator = BigInteger.ZERO;
      denominator = BigInteger.ONE;
      return;
    }

    final long bits = Double.doubleToLongBits(d);
    final int sign = (int)(bits >> 63) & 0x1;
    final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
    final long mantissa = bits & 0xfffffffffffffL;

    //number is (-1)^sign * 2^(exponent) * 1.mantissa
    BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
    BigInteger tmpDenominator = BigInteger.ONE;

    //use shortcut: 2^x == 1 << x.  if x is negative, shift the denominator
    if(exponent >= 0)
      tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
    else
      tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));

    //1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
    tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
    tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));

    BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
    numerator = tmpNumerator.divide(gcd);
    denominator = tmpDenominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from two floating-point numbers.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  See BigFraction(double) for more
   * information.
   * 
   * NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
   * may give a result closer to what the user expects.
   */
  public BigFraction(double numerator, double denominator)
  {
    if(denominator == 0)
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a new BigFraction from the given BigDecimal object.
   */
  public BigFraction(BigDecimal d)
  {
    this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
         d.scale() < 0 ? BigInteger.ONE                                             : BigInteger.TEN.pow(d.scale()));
  }

  public BigFraction(BigDecimal numerator, BigDecimal denominator)
  {
    if(denominator.equals(BigDecimal.ZERO))
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a BigFraction from a String.  Expected format is numerator/denominator,
   * but /denominator part is optional.  Either numerator or denominator may be a floating-
   * point decimal number, which in the same format as a parameter to the
   * BigDecimal(String) constructor.
   * 
   * @throws NumberFormatException  if the string cannot be properly parsed.
   */
  public BigFraction(String s)
  {
    int slashPos = s.indexOf('/');
    if(slashPos < 0)
    {
      BigFraction res = new BigFraction(new BigDecimal(s));
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
    else
    {
      BigDecimal num = new BigDecimal(s.substring(0, slashPos));
      BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
      BigFraction res = new BigFraction(num, den);
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
  }

  /**
   * Returns this + f.
   */
  public BigFraction add(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2) 
    return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this + b.
   */
  public BigFraction add(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2 = (n1 + d1*n2)/d1
    return new BigFraction(numerator.add(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this + n.
   */
  public BigFraction add(long n)
  {
    return add(BigInteger.valueOf(n));
  }

  /**
   * Returns this - f.
   */
  public BigFraction subtract(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this - b.
   */
  public BigFraction subtract(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.subtract(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this - n.
   */
  public BigFraction subtract(long n)
  {
    return subtract(BigInteger.valueOf(n));
  }

  /**
   * Returns this * f.
   */
  public BigFraction multiply(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
  }

  /**
   * Returns this * b.
   */
  public BigFraction multiply(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(b), denominator);
  }

  /**
   * Returns this * n.
   */
  public BigFraction multiply(long n)
  {
    return multiply(BigInteger.valueOf(n));
  }

  /**
   * Returns this / f.
   */
  public BigFraction divide(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    if(f.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
  }

  /**
   * Returns this / b.
   */
  public BigFraction divide(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    if(b.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator, denominator.multiply(b));
  }

  /**
   * Returns this / n.
   */
  public BigFraction divide(long n)
  {
    return divide(BigInteger.valueOf(n));
  }

  /**
   * Returns this^exponent.
   */
  public BigFraction pow(int exponent)
  {
    if(exponent == 0)
      return BigFraction.ONE;
    else if (exponent == 1)
      return this;
    else if (exponent < 0)
      return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
    else
      return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
  }

  /**
   * Returns 1/this.
   */
  public BigFraction reciprocal()
  {
    if(this.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(denominator, numerator, true);
  }

  /**
   * Returns the complement of this fraction, which is equal to 1 - this.
   * Useful for probabilities/statistics.

   */
  public BigFraction complement()
  {
    return new BigFraction(denominator.subtract(numerator), denominator, true);
  }

  /**
   * Returns -this.
   */
  public BigFraction negate()
  {
    return new BigFraction(numerator.negate(), denominator, true);
  }

  /**
   * Returns -1, 0, or 1, representing the sign of this fraction.
   */
  public int signum()
  {
    return numerator.signum();
  }

  /**
   * Returns the absolute value of this.
   */
  public BigFraction abs()
  {
    return (signum() < 0 ? negate() : this);
  }

  /**
   * Returns a string representation of this, in the form
   * numerator/denominator.
   */
  public String toString()
  {
    return numerator.toString() + "/" + denominator.toString();
  }

  /**
   * Returns if this object is equal to another object.
   */
  public boolean equals(Object o)
  {
    if(!(o instanceof BigFraction))
      return false;

    BigFraction f = (BigFraction)o;
    return numerator.equals(f.numerator) && denominator.equals(f.denominator);
  }

  /**
   * Returns a hash code for this object.
   */
  public int hashCode()
  {
    //using the method generated by Eclipse, but streamlined a bit..
    return (31 + numerator.hashCode())*31 + denominator.hashCode();
  }

  /**
   * Returns a negative, zero, or positive number, indicating if this object
   * is less than, equal to, or greater than f, respectively.
   */
  public int compareTo(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //easy case: this and f have different signs
    if(signum() != f.signum())
      return signum() - f.signum();

    //next easy case: this and f have the same denominator
    if(denominator.equals(f.denominator))
      return numerator.compareTo(f.numerator);

    //not an easy case, so first make the denominators equal then compare the numerators 
    return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
  }

  /**
   * Returns the smaller of this and f.
   */
  public BigFraction min(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) <= 0 ? this : f);
  }

  /**
   * Returns the maximum of this and f.
   */
  public BigFraction max(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) >= 0 ? this : f);
  }

  /**
   * Returns a positive BigFraction, greater than or equal to zero, and less than one.
   */
  public static BigFraction random()
  {
    return new BigFraction(Math.random());
  }

  public final BigInteger getNumerator() { return numerator; }
  public final BigInteger getDenominator() { return denominator; }

  //implementation of Number class.  may cause overflow.
  public byte   byteValue()   { return (byte) Math.max(Byte.MIN_VALUE,    Math.min(Byte.MAX_VALUE,    longValue())); }
  public short  shortValue()  { return (short)Math.max(Short.MIN_VALUE,   Math.min(Short.MAX_VALUE,   longValue())); }
  public int    intValue()    { return (int)  Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
  public long   longValue()   { return Math.round(doubleValue()); }
  public float  floatValue()  { return (float)doubleValue(); }
  public double doubleValue() { return toBigDecimal(18).doubleValue(); }

  /**
   * Returns a BigDecimal representation of this fraction.  If possible, the
   * returned value will be exactly equal to the fraction.  If not, the BigDecimal
   * will have a scale large enough to hold the same number of significant figures
   * as both numerator and denominator, or the equivalent of a double-precision
   * number, whichever is more.
   */
  public BigDecimal toBigDecimal()
  {
    //Implementation note:  A fraction can be represented exactly in base-10 iff its
    //denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
    //(In other words, if there are no prime factors of the denominator except for
    //2 and 5, or if the denominator is 1).  So to determine if this denominator is
    //of this form, continually divide by 2 to get the number of 2's, and then
    //continually divide by 5 to get the number of 5's.  Afterward, if the denominator
    //is 1 then there are no other prime factors.

    //Note: number of 2's is given by the number of trailing 0 bits in the number
    int twos = denominator.getLowestSetBit();
    BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n

    final BigInteger FIVE = BigInteger.valueOf(5);
    int fives = 0;
    BigInteger[] divMod = null;

    //while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
    while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
    {
      fives++;
      tmpDen = divMod[0];
    }

    if(BigInteger.ONE.equals(tmpDen))
    {
      //This fraction will terminate in base 10, so it can be represented exactly as
      //a BigDecimal.  We would now like to make the fraction of the form
      //unscaled / 10^scale.  We know that 2^x * 5^x = 10^x, and our denominator is
      //in the form 2^twos * 5^fives.  So use max(twos, fives) as the scale, and
      //multiply the numerator and deminator by the appropriate number of 2's or 5's
      //such that the denominator is of the form 2^scale * 5^scale.  (Of course, we
      //only have to actually multiply the numerator, since all we need for the
      //BigDecimal constructor is the scale.
      BigInteger unscaled = numerator;
      int scale = Math.max(twos, fives);

      if(twos < fives)
        unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
      else if (fives < twos)
        unscaled = unscaled.multiply(FIVE.pow(twos - fives));

      return new BigDecimal(unscaled, scale);
    }

    //else: this number will repeat infinitely in base-10.  So try to figure out
    //a good number of significant digits.  Start with the number of digits required
    //to represent the numerator and denominator in base-10, which is given by
    //bitLength / log[2](10).  (bitLenth is the number of digits in base-2).
    final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
    int precision = Math.max(numerator.bitLength(), denominator.bitLength());
    precision = (int)Math.ceil(precision / LG10);

    //If the precision is less than 18 digits, use 18 digits so that the number
    //will be at least as accurate as a cast to a double.  For example, with
    //the fraction 1/3, precision will be 1, giving a result of 0.3.  This is
    //quite a bit different from what a user would expect.
    if(precision < 18)
      precision = 18;

    return toBigDecimal(precision);
  }

  /**
   * Returns a BigDecimal representation of this fraction, with a given precision.
   * @param precision  the number of significant figures to be used in the result.
   */
  public BigDecimal toBigDecimal(int precision)
  {
    return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
  }

  //--------------------------------------------------------------------------
  //  PRIVATE FUNCTIONS
  //--------------------------------------------------------------------------

  /**
   * Private constructor, used when you can be certain that the fraction is already in
   * lowest terms.  No check is done to reduce numerator/denominator.  A check is still
   * done to maintain a positive denominator.
   * 
   * @param throwaway  unused variable, only here to signal to the compiler that this
   *                   constructor should be used.
   */
  private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
  {
    if(denominator.signum() < 0)
    {
      this.numerator = numerator.negate();
      this.denominator = denominator.negate();
    }
    else
    {
      this.numerator = numerator;
      this.denominator = denominator;
    }
  }

}

我不同意; 如果另一个用户在没有查看我的源代码的情况下使用这个类,并且得到了NullPointerException,他会认为*my*代码中存在错误.但是IllegalArgumentException表明他违反了javadoc隐含的合同(即使我没有明确说明). (23认同)

http://stackoverflow.com/questions/3881/illegalargumentexception-or-nullpointerexception-for-a-null-parameter#8160 (2认同)


cletus.. 58

让它一成不变 ;

使其成为规范,意味着6/4变为3/2(最大公约数算法对此有用);

称之为理性,因为你所代表的是一个有理数 ;

您可以使用BigInteger存储任意精确的值.如果不是那么long,那么实施起来更容易;

使分母始终为正.标志应由分子携带;

延伸Number;

实施Comparable;

实施equals()hashCode();

为a表示的数字添加工厂方法String;

添加一些方便的工厂方法;

添加一个toString(); 和

做吧Serializable.

事实上,尝试这个尺寸.它运行但可能有一些问题:

public class BigRational extends Number implements Comparable, Serializable {
    public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    private final static long serialVersionUID = 1099377265582986378L;

    private final BigInteger numerator, denominator;

    private BigRational(BigInteger numerator, BigInteger denominator) {
        this.numerator = numerator;
        this.denominator = denominator;
    }

    private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
        if (denominator.signum() == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if (numerator.signum() == 0) {
            return ZERO;
        }
        if (denominator.signum() < 0) {
            numerator = numerator.negate();
            denominator = denominator.negate();
        }
        if (checkGcd) {
            BigInteger gcd = numerator.gcd(denominator);
            if (!gcd.equals(BigInteger.ONE)) {
                numerator = numerator.divide(gcd);
                denominator = denominator.divide(gcd);
            }
        }
        return new BigRational(numerator, denominator);
    }

    public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
        return canonical(numerator, denominator, true);
    }

    public static BigRational getInstance(long numerator, long denominator) {
        return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
    }

    public static BigRational getInstance(String numerator, String denominator) {
        return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
    }

    public static BigRational valueOf(String s) {
        Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
        Matcher m = p.matcher(s);
        if (!m.matches()) {
            throw new IllegalArgumentException("Unknown format '" + s + "'");
        }

        // this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
        String whole = m.group(1);
        String decimal = m.group(2);
        String exponent = m.group(3);
        String n = whole;

        // 23.123 => 23123
        if (decimal != null) {
            n += decimal;
        }
        BigInteger numerator = new BigInteger(n);

        // exponent is an int because BigInteger.pow() takes an int argument
        // it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
        int exp = exponent == null ? 0 : Integer.valueOf(exponent);
        int decimalPlaces = decimal == null ? 0 : decimal.length();
        exp -= decimalPlaces;
        BigInteger denominator;
        if (exp < 0) {
            denominator = BigInteger.TEN.pow(-exp);
        } else {
            numerator = numerator.multiply(BigInteger.TEN.pow(exp));
            denominator = BigInteger.ONE;
        }

        // done
        return canonical(numerator, denominator, true);
    }

    // Comparable
    public int compareTo(BigRational o) {
        // note: this is a bit of cheat, relying on BigInteger.compareTo() returning
        // -1, 0 or 1.  For the more general contract of compareTo(), you'd need to do
        // more checking
        if (numerator.signum() != o.numerator.signum()) {
            return numerator.signum() - o.numerator.signum();
        } else {
            // oddly BigInteger has gcd() but no lcm()
            BigInteger i1 = numerator.multiply(o.denominator);
            BigInteger i2 = o.numerator.multiply(denominator);
            return i1.compareTo(i2); // expensive!
        }
    }

    public BigRational add(BigRational o) {
        if (o.numerator.signum() == 0) {
            return this;
        } else if (numerator.signum() == 0) {
            return o;
        } else if (denominator.equals(o.denominator)) {
            return new BigRational(numerator.add(o.numerator), denominator);
        } else {
            return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
        }
    }


    public BigRational multiply(BigRational o) {
        if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
            return ZERO;
        } else if (numerator.equals(o.denominator)) {
            return canonical(o.numerator, denominator, true);
        } else if (o.numerator.equals(denominator)) {
            return canonical(numerator, o.denominator, true);
        } else if (numerator.negate().equals(o.denominator)) {
            return canonical(o.numerator.negate(), denominator, true);
        } else if (o.numerator.negate().equals(denominator)) {
            return canonical(numerator.negate(), o.denominator, true);
        } else {
            return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
        }
    }

    public BigInteger getNumerator() { return numerator; }
    public BigInteger getDenominator() { return denominator; }
    public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
    public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
    public BigRational invert() { return canonical(denominator, numerator, false); }
    public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
    public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
    public BigRational subtract(BigRational o) { return add(o.negate()); }
    public BigRational divide(BigRational o) { return multiply(o.invert()); }
    public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
    public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }

    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
        return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    // Number
    public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
    public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
    public float floatValue() { return (float)doubleValue(); }
    public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }

    @Override
    public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        BigRational that = (BigRational) o;

        if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
        if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;

        return true;
    }

    @Override
    public int hashCode() {
        int result = numerator != null ? numerator.hashCode() : 0;
        result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
        return result;
    }

    public static void main(String args[]) {
        BigRational r1 = BigRational.valueOf("3.14e4");
        BigRational r2 = BigRational.getInstance(111, 7);
        dump("r1", r1);
        dump("r2", r2);
        dump("r1 + r2", r1.add(r2));
        dump("r1 - r2", r1.subtract(r2));
        dump("r1 * r2", r1.multiply(r2));
        dump("r1 / r2", r1.divide(r2));
        dump("r2 ^ 2", r2.pow(2));
    }

    public static void dump(String name, BigRational r) {
        System.out.printf("%s = %s%n", name, r);
        System.out.printf("%s.negate() = %s%n", name, r.negate());
        System.out.printf("%s.invert() = %s%n", name, r.invert());
        System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
        System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
        System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
        System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
        System.out.println();
    }
}

输出是:

r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000

r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143

r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143

r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857

r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714

r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180

r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980


yawmark.. 28

我正在尝试使用Java中的适当分数.

Apache Commons Math在很长一段时间内都有一个Fraction类.大多数时候,答案是"男孩,我希望Java 在核心库中有类似X的东西!" 可以在Apache Commons库的保护下找到.



1> Kip..:

碰巧我不久前写了一个BigFraction类,用于Project Euler问题.它保留了一个BigInteger分子和分母,因此它永远不会溢出.但是对于你知道永远不会溢出的许多操作来说,这将是一个缓慢的过程..无论如何,如果你想要它,请使用它.我一直渴望以某种方式表明这一点.:)

编辑:此代码的最新版本和最佳版本,包括单元测试现在托管在GitHub上,也可以通过Maven Central获得.我将原始代码保留在此处,以便此答案不仅仅是一个链接......


import java.math.*;

/**
 * Arbitrary-precision fractions, utilizing BigIntegers for numerator and
 * denominator.  Fraction is always kept in lowest terms.  Fraction is
 * immutable, and guaranteed not to have a null numerator or denominator.
 * Denominator will always be positive (so sign is carried by numerator,
 * and a zero-denominator is impossible).
 */
public final class BigFraction extends Number implements Comparable
{
  private static final long serialVersionUID = 1L; //because Number is Serializable
  private final BigInteger numerator;
  private final BigInteger denominator;

  public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
  public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);

  /**
   * Constructs a BigFraction with given numerator and denominator.  Fraction
   * will be reduced to lowest terms.  If fraction is negative, negative sign will
   * be carried on numerator, regardless of how the values were passed in.
   */
  public BigFraction(BigInteger numerator, BigInteger denominator)
  {
    if(numerator == null)
      throw new IllegalArgumentException("Numerator is null");
    if(denominator == null)
      throw new IllegalArgumentException("Denominator is null");
    if(denominator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero.");

    //only numerator should be negative.
    if(denominator.signum() < 0)
    {
      numerator = numerator.negate();
      denominator = denominator.negate();
    }

    //create a reduced fraction
    BigInteger gcd = numerator.gcd(denominator);
    this.numerator = numerator.divide(gcd);
    this.denominator = denominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from a whole number.
   */
  public BigFraction(BigInteger numerator)
  {
    this(numerator, BigInteger.ONE, true);
  }

  public BigFraction(long numerator, long denominator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
  }

  public BigFraction(long numerator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
  }

  /**
   * Constructs a BigFraction from a floating-point number.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  For example, 
   *     System.out.println(new BigFraction(1.1))
   * will print:
   *     2476979795053773/2251799813685248
   * 
   * This is because 1.1 cannot be expressed exactly in binary form.  The
   * given fraction is exactly equal to the internal representation of
   * the double-precision floating-point number.  (Which, for 1.1, is:
   * (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
   * 
   * NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
   * closer to what the user expects.
   */
  public BigFraction(double d)
  {
    if(Double.isInfinite(d))
      throw new IllegalArgumentException("double val is infinite");
    if(Double.isNaN(d))
      throw new IllegalArgumentException("double val is NaN");

    //special case - math below won't work right for 0.0 or -0.0
    if(d == 0)
    {
      numerator = BigInteger.ZERO;
      denominator = BigInteger.ONE;
      return;
    }

    final long bits = Double.doubleToLongBits(d);
    final int sign = (int)(bits >> 63) & 0x1;
    final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
    final long mantissa = bits & 0xfffffffffffffL;

    //number is (-1)^sign * 2^(exponent) * 1.mantissa
    BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
    BigInteger tmpDenominator = BigInteger.ONE;

    //use shortcut: 2^x == 1 << x.  if x is negative, shift the denominator
    if(exponent >= 0)
      tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
    else
      tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));

    //1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
    tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
    tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));

    BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
    numerator = tmpNumerator.divide(gcd);
    denominator = tmpDenominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from two floating-point numbers.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  See BigFraction(double) for more
   * information.
   * 
   * NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
   * may give a result closer to what the user expects.
   */
  public BigFraction(double numerator, double denominator)
  {
    if(denominator == 0)
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a new BigFraction from the given BigDecimal object.
   */
  public BigFraction(BigDecimal d)
  {
    this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
         d.scale() < 0 ? BigInteger.ONE                                             : BigInteger.TEN.pow(d.scale()));
  }

  public BigFraction(BigDecimal numerator, BigDecimal denominator)
  {
    if(denominator.equals(BigDecimal.ZERO))
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a BigFraction from a String.  Expected format is numerator/denominator,
   * but /denominator part is optional.  Either numerator or denominator may be a floating-
   * point decimal number, which in the same format as a parameter to the
   * BigDecimal(String) constructor.
   * 
   * @throws NumberFormatException  if the string cannot be properly parsed.
   */
  public BigFraction(String s)
  {
    int slashPos = s.indexOf('/');
    if(slashPos < 0)
    {
      BigFraction res = new BigFraction(new BigDecimal(s));
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
    else
    {
      BigDecimal num = new BigDecimal(s.substring(0, slashPos));
      BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
      BigFraction res = new BigFraction(num, den);
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
  }

  /**
   * Returns this + f.
   */
  public BigFraction add(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2) 
    return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this + b.
   */
  public BigFraction add(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2 = (n1 + d1*n2)/d1
    return new BigFraction(numerator.add(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this + n.
   */
  public BigFraction add(long n)
  {
    return add(BigInteger.valueOf(n));
  }

  /**
   * Returns this - f.
   */
  public BigFraction subtract(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this - b.
   */
  public BigFraction subtract(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.subtract(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this - n.
   */
  public BigFraction subtract(long n)
  {
    return subtract(BigInteger.valueOf(n));
  }

  /**
   * Returns this * f.
   */
  public BigFraction multiply(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
  }

  /**
   * Returns this * b.
   */
  public BigFraction multiply(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(b), denominator);
  }

  /**
   * Returns this * n.
   */
  public BigFraction multiply(long n)
  {
    return multiply(BigInteger.valueOf(n));
  }

  /**
   * Returns this / f.
   */
  public BigFraction divide(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    if(f.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
  }

  /**
   * Returns this / b.
   */
  public BigFraction divide(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    if(b.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator, denominator.multiply(b));
  }

  /**
   * Returns this / n.
   */
  public BigFraction divide(long n)
  {
    return divide(BigInteger.valueOf(n));
  }

  /**
   * Returns this^exponent.
   */
  public BigFraction pow(int exponent)
  {
    if(exponent == 0)
      return BigFraction.ONE;
    else if (exponent == 1)
      return this;
    else if (exponent < 0)
      return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
    else
      return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
  }

  /**
   * Returns 1/this.
   */
  public BigFraction reciprocal()
  {
    if(this.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(denominator, numerator, true);
  }

  /**
   * Returns the complement of this fraction, which is equal to 1 - this.
   * Useful for probabilities/statistics.

   */
  public BigFraction complement()
  {
    return new BigFraction(denominator.subtract(numerator), denominator, true);
  }

  /**
   * Returns -this.
   */
  public BigFraction negate()
  {
    return new BigFraction(numerator.negate(), denominator, true);
  }

  /**
   * Returns -1, 0, or 1, representing the sign of this fraction.
   */
  public int signum()
  {
    return numerator.signum();
  }

  /**
   * Returns the absolute value of this.
   */
  public BigFraction abs()
  {
    return (signum() < 0 ? negate() : this);
  }

  /**
   * Returns a string representation of this, in the form
   * numerator/denominator.
   */
  public String toString()
  {
    return numerator.toString() + "/" + denominator.toString();
  }

  /**
   * Returns if this object is equal to another object.
   */
  public boolean equals(Object o)
  {
    if(!(o instanceof BigFraction))
      return false;

    BigFraction f = (BigFraction)o;
    return numerator.equals(f.numerator) && denominator.equals(f.denominator);
  }

  /**
   * Returns a hash code for this object.
   */
  public int hashCode()
  {
    //using the method generated by Eclipse, but streamlined a bit..
    return (31 + numerator.hashCode())*31 + denominator.hashCode();
  }

  /**
   * Returns a negative, zero, or positive number, indicating if this object
   * is less than, equal to, or greater than f, respectively.
   */
  public int compareTo(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //easy case: this and f have different signs
    if(signum() != f.signum())
      return signum() - f.signum();

    //next easy case: this and f have the same denominator
    if(denominator.equals(f.denominator))
      return numerator.compareTo(f.numerator);

    //not an easy case, so first make the denominators equal then compare the numerators 
    return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
  }

  /**
   * Returns the smaller of this and f.
   */
  public BigFraction min(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) <= 0 ? this : f);
  }

  /**
   * Returns the maximum of this and f.
   */
  public BigFraction max(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) >= 0 ? this : f);
  }

  /**
   * Returns a positive BigFraction, greater than or equal to zero, and less than one.
   */
  public static BigFraction random()
  {
    return new BigFraction(Math.random());
  }

  public final BigInteger getNumerator() { return numerator; }
  public final BigInteger getDenominator() { return denominator; }

  //implementation of Number class.  may cause overflow.
  public byte   byteValue()   { return (byte) Math.max(Byte.MIN_VALUE,    Math.min(Byte.MAX_VALUE,    longValue())); }
  public short  shortValue()  { return (short)Math.max(Short.MIN_VALUE,   Math.min(Short.MAX_VALUE,   longValue())); }
  public int    intValue()    { return (int)  Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
  public long   longValue()   { return Math.round(doubleValue()); }
  public float  floatValue()  { return (float)doubleValue(); }
  public double doubleValue() { return toBigDecimal(18).doubleValue(); }

  /**
   * Returns a BigDecimal representation of this fraction.  If possible, the
   * returned value will be exactly equal to the fraction.  If not, the BigDecimal
   * will have a scale large enough to hold the same number of significant figures
   * as both numerator and denominator, or the equivalent of a double-precision
   * number, whichever is more.
   */
  public BigDecimal toBigDecimal()
  {
    //Implementation note:  A fraction can be represented exactly in base-10 iff its
    //denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
    //(In other words, if there are no prime factors of the denominator except for
    //2 and 5, or if the denominator is 1).  So to determine if this denominator is
    //of this form, continually divide by 2 to get the number of 2's, and then
    //continually divide by 5 to get the number of 5's.  Afterward, if the denominator
    //is 1 then there are no other prime factors.

    //Note: number of 2's is given by the number of trailing 0 bits in the number
    int twos = denominator.getLowestSetBit();
    BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n

    final BigInteger FIVE = BigInteger.valueOf(5);
    int fives = 0;
    BigInteger[] divMod = null;

    //while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
    while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
    {
      fives++;
      tmpDen = divMod[0];
    }

    if(BigInteger.ONE.equals(tmpDen))
    {
      //This fraction will terminate in base 10, so it can be represented exactly as
      //a BigDecimal.  We would now like to make the fraction of the form
      //unscaled / 10^scale.  We know that 2^x * 5^x = 10^x, and our denominator is
      //in the form 2^twos * 5^fives.  So use max(twos, fives) as the scale, and
      //multiply the numerator and deminator by the appropriate number of 2's or 5's
      //such that the denominator is of the form 2^scale * 5^scale.  (Of course, we
      //only have to actually multiply the numerator, since all we need for the
      //BigDecimal constructor is the scale.
      BigInteger unscaled = numerator;
      int scale = Math.max(twos, fives);

      if(twos < fives)
        unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
      else if (fives < twos)
        unscaled = unscaled.multiply(FIVE.pow(twos - fives));

      return new BigDecimal(unscaled, scale);
    }

    //else: this number will repeat infinitely in base-10.  So try to figure out
    //a good number of significant digits.  Start with the number of digits required
    //to represent the numerator and denominator in base-10, which is given by
    //bitLength / log[2](10).  (bitLenth is the number of digits in base-2).
    final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
    int precision = Math.max(numerator.bitLength(), denominator.bitLength());
    precision = (int)Math.ceil(precision / LG10);

    //If the precision is less than 18 digits, use 18 digits so that the number
    //will be at least as accurate as a cast to a double.  For example, with
    //the fraction 1/3, precision will be 1, giving a result of 0.3.  This is
    //quite a bit different from what a user would expect.
    if(precision < 18)
      precision = 18;

    return toBigDecimal(precision);
  }

  /**
   * Returns a BigDecimal representation of this fraction, with a given precision.
   * @param precision  the number of significant figures to be used in the result.
   */
  public BigDecimal toBigDecimal(int precision)
  {
    return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
  }

  //--------------------------------------------------------------------------
  //  PRIVATE FUNCTIONS
  //--------------------------------------------------------------------------

  /**
   * Private constructor, used when you can be certain that the fraction is already in
   * lowest terms.  No check is done to reduce numerator/denominator.  A check is still
   * done to maintain a positive denominator.
   * 
   * @param throwaway  unused variable, only here to signal to the compiler that this
   *                   constructor should be used.
   */
  private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
  {
    if(denominator.signum() < 0)
    {
      this.numerator = numerator.negate();
      this.denominator = denominator.negate();
    }
    else
    {
      this.numerator = numerator;
      this.denominator = denominator;
    }
  }

}


我不同意; 如果另一个用户在没有查看我的源代码的情况下使用这个类,并且得到了NullPointerException,他会认为*my*代码中存在错误.但是IllegalArgumentException表明他违反了javadoc隐含的合同(即使我没有明确说明).
http://stackoverflow.com/questions/3881/illegalargumentexception-or-nullpointerexception-for-a-null-parameter#8160

2> cletus..:

让它一成不变 ;

使其成为规范,意味着6/4变为3/2(最大公约数算法对此有用);

称之为理性,因为你所代表的是一个有理数 ;

您可以使用BigInteger存储任意精确的值.如果不是那么long,那么实施起来更容易;

使分母始终为正.标志应由分子携带;

延伸Number;

实施Comparable;

实施equals()hashCode();

为a表示的数字添加工厂方法String;

添加一些方便的工厂方法;

添加一个toString(); 和

做吧Serializable.

事实上,尝试这个尺寸.它运行但可能有一些问题:

public class BigRational extends Number implements Comparable, Serializable {
    public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    private final static long serialVersionUID = 1099377265582986378L;

    private final BigInteger numerator, denominator;

    private BigRational(BigInteger numerator, BigInteger denominator) {
        this.numerator = numerator;
        this.denominator = denominator;
    }

    private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
        if (denominator.signum() == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if (numerator.signum() == 0) {
            return ZERO;
        }
        if (denominator.signum() < 0) {
            numerator = numerator.negate();
            denominator = denominator.negate();
        }
        if (checkGcd) {
            BigInteger gcd = numerator.gcd(denominator);
            if (!gcd.equals(BigInteger.ONE)) {
                numerator = numerator.divide(gcd);
                denominator = denominator.divide(gcd);
            }
        }
        return new BigRational(numerator, denominator);
    }

    public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
        return canonical(numerator, denominator, true);
    }

    public static BigRational getInstance(long numerator, long denominator) {
        return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
    }

    public static BigRational getInstance(String numerator, String denominator) {
        return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
    }

    public static BigRational valueOf(String s) {
        Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
        Matcher m = p.matcher(s);
        if (!m.matches()) {
            throw new IllegalArgumentException("Unknown format '" + s + "'");
        }

        // this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
        String whole = m.group(1);
        String decimal = m.group(2);
        String exponent = m.group(3);
        String n = whole;

        // 23.123 => 23123
        if (decimal != null) {
            n += decimal;
        }
        BigInteger numerator = new BigInteger(n);

        // exponent is an int because BigInteger.pow() takes an int argument
        // it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
        int exp = exponent == null ? 0 : Integer.valueOf(exponent);
        int decimalPlaces = decimal == null ? 0 : decimal.length();
        exp -= decimalPlaces;
        BigInteger denominator;
        if (exp < 0) {
            denominator = BigInteger.TEN.pow(-exp);
        } else {
            numerator = numerator.multiply(BigInteger.TEN.pow(exp));
            denominator = BigInteger.ONE;
        }

        // done
        return canonical(numerator, denominator, true);
    }

    // Comparable
    public int compareTo(BigRational o) {
        // note: this is a bit of cheat, relying on BigInteger.compareTo() returning
        // -1, 0 or 1.  For the more general contract of compareTo(), you'd need to do
        // more checking
        if (numerator.signum() != o.numerator.signum()) {
            return numerator.signum() - o.numerator.signum();
        } else {
            // oddly BigInteger has gcd() but no lcm()
            BigInteger i1 = numerator.multiply(o.denominator);
            BigInteger i2 = o.numerator.multiply(denominator);
            return i1.compareTo(i2); // expensive!
        }
    }

    public BigRational add(BigRational o) {
        if (o.numerator.signum() == 0) {
            return this;
        } else if (numerator.signum() == 0) {
            return o;
        } else if (denominator.equals(o.denominator)) {
            return new BigRational(numerator.add(o.numerator), denominator);
        } else {
            return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
        }
    }


    public BigRational multiply(BigRational o) {
        if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
            return ZERO;
        } else if (numerator.equals(o.denominator)) {
            return canonical(o.numerator, denominator, true);
        } else if (o.numerator.equals(denominator)) {
            return canonical(numerator, o.denominator, true);
        } else if (numerator.negate().equals(o.denominator)) {
            return canonical(o.numerator.negate(), denominator, true);
        } else if (o.numerator.negate().equals(denominator)) {
            return canonical(numerator.negate(), o.denominator, true);
        } else {
            return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
        }
    }

    public BigInteger getNumerator() { return numerator; }
    public BigInteger getDenominator() { return denominator; }
    public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
    public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
    public BigRational invert() { return canonical(denominator, numerator, false); }
    public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
    public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
    public BigRational subtract(BigRational o) { return add(o.negate()); }
    public BigRational divide(BigRational o) { return multiply(o.invert()); }
    public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
    public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }

    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
        return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    // Number
    public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
    public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
    public float floatValue() { return (float)doubleValue(); }
    public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }

    @Override
    public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        BigRational that = (BigRational) o;

        if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
        if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;

        return true;
    }

    @Override
    public int hashCode() {
        int result = numerator != null ? numerator.hashCode() : 0;
        result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
        return result;
    }

    public static void main(String args[]) {
        BigRational r1 = BigRational.valueOf("3.14e4");
        BigRational r2 = BigRational.getInstance(111, 7);
        dump("r1", r1);
        dump("r2", r2);
        dump("r1 + r2", r1.add(r2));
        dump("r1 - r2", r1.subtract(r2));
        dump("r1 * r2", r1.multiply(r2));
        dump("r1 / r2", r1.divide(r2));
        dump("r2 ^ 2", r2.pow(2));
    }

    public static void dump(String name, BigRational r) {
        System.out.printf("%s = %s%n", name, r);
        System.out.printf("%s.negate() = %s%n", name, r.negate());
        System.out.printf("%s.invert() = %s%n", name, r.invert());
        System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
        System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
        System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
        System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
        System.out.println();
    }
}

输出是:

r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000

r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143

r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143

r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857

r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714

r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180

r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980



3> yawmark..:

我正在尝试使用Java中的适当分数.

Apache Commons Math在很长一段时间内都有一个Fraction类.大多数时候,答案是"男孩,我希望Java 在核心库中有类似X的东西!" 可以在Apache Commons库的保护下找到.


我会告诉你为什么这么低,Apache Commons库不是新手友好的.首先,没有直接链接在该页面上下载(它隐藏在侧边栏菜单中),其次没有关于如何使用它的说明(在构建路径中添加jar),第三,我在添加它之后得到了一个classDefNotFound错误.所以你不会得到我们只知道如何复制和粘贴的人的赞成.

4> Jon Skeet..:

请使它成为不可变类型!例如,分数的值不会改变 - 一半不会变成第三个.您可以使用withDenominator而不是setDenominator,它返回一个具有相同分子但指定分母的分数.

不可变类型的生活容易.

覆盖equals和hashcode也是明智的,因此它可以用在地图和集合中.Outlaw Programmer关于算术运算符和字符串格式的要点也很好.

作为一般指南,请查看BigInteger和BigDecimal.他们没有做同样的事情,但他们的相似性足以给你很好的想法.


"请把它变成一个不可变的类型!一个分数的值不会改变 - 例如,一半不会成为第三个." list/tuple/vector(1,2,3,4)也不会成为值(4,3,2,1),但它似乎并没有打扰列出更改状态的大多数人.并不是说我不同意分数的不变性,但它应该有更好的论据.感觉就像一个价值而不是一堆国家.程序员期望正确的理由受到指导吗?我不是百分百肯定,但这听起来不错.
那么,在现实生活中列表*做*改变:你如何写购物清单?你从一张白纸开始,然后在上面写字.中途通过你仍称它为"购物清单".话虽如此,函数式编程确实努力使偶数列表不可变...

5> Outlaw Progr..:

好吧,对于其中之一,我将摆脱制定者并使分数不可变.

你可能也想要添加,减去等方法,也许还有一些方法来获得各种String格式的表示.

编辑:我可能会将这些字段标记为"最终"以表示我的意图,但我想这不是什么大问题......


我想知道到底会有多少个“使其不可变”的答案:)

6> Jason S..:

我需要从最小到最大排序它们,所以最终我还需要将它们表示为双精度

不是绝对必要的.(事实上​​,如果你想正确处理相等,不要依赖double来正常工作.)如果b*d是正数,a/b

我可能会改写为:

public int compareTo(Fraction frac)
{
    // we are comparing this=a/b with frac=c/d 
    // by multiplying both sides by bd.
    // If bd is positive, then a/b < c/d <=> ad < bc.
    // If bd is negative, then a/b < c/d <=> ad > bc.
    // If bd is 0, then you've got other problems (either b=0 or d=0)
    int d = frac.getDenominator();
    long ad = (long)this.numerator * d;
    long bc = (long)this.denominator * frac.getNumerator();
    long diff = ((long)d*this.denominator > 0) ? (ad-bc) : (bc-ad);
    return (diff > 0 ? 1 : (diff < 0 ? -1 : 0));
}

long这里的用法是确保如果你乘以两个大的ints 就没有溢出.handle如果你可以保证分母总是非负的(如果它是负数,只是否定分子和分母),那么你可以摆脱必须检查b*d是否为正并保存几步.我不确定你用零分母寻找什么行为.

不确定性能与使用双打进行比较的效果如何.(也就是说,如果你关心性能那么多)这是我用来检查的测试方法.(似乎正常工作.)

public static void main(String[] args)
{
    int a = Integer.parseInt(args[0]);
    int b = Integer.parseInt(args[1]);
    int c = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    Fraction f1 = new Fraction(a,b); 
    Fraction f2 = new Fraction(c,d);
    int rel = f1.compareTo(f2);
    String relstr = "<=>";
    System.out.println(a+"/"+b+" "+relstr.charAt(rel+1)+" "+c+"/"+d);
}

(ps你可能会考虑重组实施ComparableComparator为你的班级.)



7> Michael Borg..:

没有像add()和multiply()等算术方法,这有点无意义.

你绝对应该重写equals()和hashCode().

您应该添加一个方法来标准化分数,或者自动执行.想想你是否想要1/2和2/4被认为是相同的 - 这对equals(),hashCode()和compareTo()方法有影响.

推荐阅读
贾志军
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有