当前位置:  开发笔记 > 人工智能 > 正文

pytorch visdom安装开启及使用方法

这篇文章主要介绍了pytorchvisdom安装开启及使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

安装

conda activate ps 
pip install visdom

激活ps的环境,在指定的ps环境中安装visdom

开启

python -m visdom.server

在这里插入图片描述

浏览器输入红框内的网址

在这里插入图片描述

使用

1. 简单示例:一条线

from visdom import Visdom

# 创建一个实例
viz=Visdom()

# 创建一个直线,再把最新数据添加到直线上
# y x二维两个轴,win 创建一个小窗口,不指定就默认为大窗口,opts其他信息比如名称
viz.line([1,2,3,4],[1,2,3,4],win="train_loss",opts=dict(title='train_loss'))

# 更一般的情况,因为下面y x数据不存在,只是示例
#  append 添加到原来的后面,不然全部覆盖掉
# viz.line([loss.item()],[global_step],win="train_loss",update='append')

在这里插入图片描述

2. 简单示例:2条线

下面主要是[[y1],[y2]],[x] 两条映射,legend就是线条名称

from visdom import Visdom
viz=Visdom()
viz.line([[1,2],[5,6]],[1,2],win="loss_acc",opts=dict(title='train loss & acc',legend=['loss','acc']))

在这里插入图片描述

3. 显示图片

from visdom import Visdom
viz=Visdom()
# data 是一个batch
viz.image(data.view(-1,1,28,28),win='x')
viz.text(str(pred.datach().cpu().numpy()),win='pred',opts=dict(title='pred'))

4. 手写数字示例

动画效果图如下

在这里插入图片描述

import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms

from visdom import Visdom

batch_size=200
learning_rate=0.01
epochs=10

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       # transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        # transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)



class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)

viz = Visdom()

viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
                                                   legend=['loss', 'acc.']))
global_step = 0

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.cuda()

        logits = net(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

        global_step += 1
        viz.line([loss.item()], [global_step], win='train_loss', update='append')

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.argmax(dim=1)
        correct += pred.eq(target).float().sum().item()

    viz.line([[test_loss, correct / len(test_loader.dataset)]],
             [global_step], win='test', update='append')
    viz.images(data.view(-1, 1, 28, 28), win='x')
    viz.text(str(pred.detach().cpu().numpy()), win='pred',
             opts=dict(title='pred'))

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

到此这篇关于pytorch visdom安装开启及使用方法的文章就介绍到这了,更多相关pytorch visdom使用内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

推荐阅读
贴进你的心聆听你的世界
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有