当前位置:  开发笔记 > 人工智能 > 正文

pytorch梯度剪裁方式

今天小编就为大家分享一篇pytorch梯度剪裁方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说,看例子吧!

import torch.nn as nn

outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

parameters – 一个基于变量的迭代器,会进行梯度归一化

max_norm – 梯度的最大范数

norm_type – 规定范数的类型,默认为L2

以上这篇pytorch梯度剪裁方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

推荐阅读
勤奋的瞌睡猪_715
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有