当前位置:  开发笔记 > 人工智能 > 正文

tensorflow输出权重值和偏差的方法

使用tensorflow训练模型时,我们可以使用tensorflow自带的Save模块tf.train.Saver()来保存模型,使用方式很简单就是在训练完模型后,调用saver.save()即可saver=tf.train.Saver(write_version=tf.train.SaverDef

使用tensorflow 训练模型时,我们可以使用 tensorflow自带的 Save模块 tf.train.Saver()来保存模型,使用方式很简单 就是在训练完模型后,调用saver.save()即可

saver = tf.train.Saver(write_version=tf.train.SaverDef.V2) 
saver.save(sess, save_dir+"crfmodel.ckpt", global_step=0) 

重新载入模型

saver = tf.train.Saver() 
ckpt = tf.train.get_checkpoint_state(FLAGS.restore_model) 
saver.restore(sess, ckpt.model_checkpoint_path) 

但是这种方式保存的模型中包含特别多的信息,使保存的模型很大,其实里面有很多不是我们想要的.我们就想要里面最重要的权重信息和偏差等等数据,然后再自己写解密代码,就可以把模型应用于其他的平台,比如安卓手机.
那么我们可以使用下面的方式获取训练后的权重和偏移,

ww, bb = sess.run([self.W,self.b]) 

其中W,和b都是 Tensor类型的数据 

with tf.name_scope('weights'): 
   self.W = tf.get_variable( 
     shape=[self.feat_size, self.nb_classes], 
     initializer=tf.truncated_normal_initializer(stddev=0.01), 
     name='weights' 
     # ,regularizer=tf.contrib.layers.l1_regularizer(0.1) 
   ) 
 with tf.name_scope('biases'): 
   self.b = tf.get_variable( 
     shape=[self.nb_classes], 
     initializer=tf.truncated_normal_initializer(stddev=0.01), 
     name='bias' 
   ) 

tensorflow 输出权重 到csv或txt

import numpy as np
W_val, b_val = sess.run([weights_tensor, biases_tensor])
np.savetxt("W.csv", W_val, delimiter=",")
np.savetxt("b.csv", b_val, delimiter=",")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

推荐阅读
mobiledu2402852413
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有