事实上,Python 多线程另一个很重要的话题叫,GIL
(Global Interpreter Lock
,即全局解释器锁)。
在Python中,可以通过多进程、多线程和多协程来实现多任务。难道多线程就一定比单线程快?
下面我用一段代码证明我自己得观点。
''' @Author: Runsen @微信公众号: Python之王 @博客: https://blog.csdn.net/weixin_44510615 @Date: 2020/6/4 '''import threading, timedef my_counter(): i = 0 for _ in range(100000000): i = i+1 return Truedef main1(): start_time = time.time() for tid in range(2): t = threading.Thread(target=my_counter) t.start() t.join() # 第一次循环的时候join方法引起主线程阻塞,但第二个线程并没有启动,所以两个线程是顺序执行的 print("单线程顺序执行total_time: {}".format(time.time() - start_time))def main2(): thread_ary = {} start_time = time.time() for tid in range(2): t = threading.Thread(target=my_counter) t.start() thread_ary[tid] = t for i in range(2): thread_ary[i].join() # 两个线程均已启动,所以两个线程是并发的 print("多线程执行total_time: {}".format(time.time() - start_time))if __name__ == "__main__": main1() main2()复制代码
运行结果
单线程顺序执行total_time: 17.754502773284912多线程执行total_time: 20.01178550720215复制代码
我怕你说我乱得出来得结果,我还是截个图看清楚点
计算密集型任务的特点是要进行大量的计算,消耗CPU资源。
我们先来看一个简单的计算密集型示例:
''' @Author: Runsen @微信公众号: Python之王 @博客: https://blog.csdn.net/weixin_44510615 @Date: 2020/6/4 '''import time COUNT = 50_000_000def count_down(): global COUNT while COUNT > 0: COUNT -= 1s = time.perf_counter() count_down() c = time.perf_counter() - s print('time taken in seconds - >:', c) time taken in seconds - >: 9.2957003复制代码
这个是单线程, 时间是9s, 下面我们用两个线程看看结果又如何:
''' @Author: Runsen @微信公众号: Python之王 @博客: https://blog.csdn.net/weixin_44510615 @Date: 2020/6/4 '''import timefrom threading import Thread COUNT = 50_000_000def count_down(): global COUNT while COUNT > 0: COUNT -= 1s = time.perf_counter() t1 = Thread(target=count_down) t2 = Thread(target=count_down) t1.start() t2.start() t1.join() t2.join() c = time.perf_counter() - s print('time taken in seconds - >:', c) time taken in seconds - >: 17.110625复制代码
我们程序主要的操作就是在计算, CPU没有等待, 而改为多线程后, 增加了线程后, 在线程之间频繁的切换,增大了时间开销, 时间当然会增加了。
还有一种类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
总结:对于io密集型工作(Python爬虫),多线程可以大幅提高代码效率。对CPU计算密集型(Python数据分析,机器学习,深度学习),多线程的效率可能比单线程还略低。所以,数据领域没有多线程提高效率之说,只有将CPU提升到GPU,TPU来提升计算能力。
相关免费学习推荐:python视频教程
以上就是多线程比单线程快,是真的吗?的详细内容,更多请关注其它相关文章!