由于java.lang.Math中的三角函数非常慢:是否有一个快速和良好近似的库?似乎可以在不损失太多精度的情况下快速进行几次计算.(在我的机器上,乘法需要1.5ns,而java.lang.Math.sin需要46ns到116ns).遗憾的是,还没有办法使用硬件功能.
更新:功能应该足够准确,比如GPS计算.这意味着您需要至少7个十进制数字的精度,这排除了简单的查找表.它应该比基本x86系统上的java.lang.Math.sin快得多.否则就没有意义了.
对于pi/4以上的值,除硬件功能外,Java 还会进行一些昂贵的计算.这样做是有充分理由的,但有时你更关心速度而不是最后一位精度.
哈特的计算机近似.将Chebyshev经济的近似公式列表为不同精度的一系列函数.
编辑:将我的副本从架子上拿下来,结果证明这是一本听起来非常相似的书.这是使用其表格的sin函数.(在C中测试,因为这对我来说更方便.)我不知道这是否会比Java内置更快,但至少可以保证它不那么准确.:)您可能需要先缩小参数范围; 看约翰库克的建议.这本书还有arcsin和arctan.
#include#include // Return an approx to sin(pi/2 * x) where -1 <= x <= 1. // In that range it has a max absolute error of 5e-9 // according to Hastings, Approximations For Digital Computers. static double xsin (double x) { double x2 = x * x; return ((((.00015148419 * x2 - .00467376557) * x2 + .07968967928) * x2 - .64596371106) * x2 + 1.57079631847) * x; } int main () { double pi = 4 * atan (1); printf ("%.10f\n", xsin (0.77)); printf ("%.10f\n", sin (0.77 * (pi/2))); return 0; }
这是一组用于快速逼近trig函数的低级技巧.在C中有一些示例代码,我觉得很难遵循,但这些技术在Java中很容易实现.
这是我在Java中的invsqrt和atan2的等效实现.
我可以为其他trig函数做类似的事情,但我没有发现它是必要的,因为分析显示只有sqrt和atan/atan2是主要的瓶颈.
public class FastTrig { /** Fast approximation of 1.0 / sqrt(x). * See http://www.beyond3d.com/content/articles/8/ * @param x Positive value to estimate inverse of square root of * @return Approximately 1.0 / sqrt(x) **/ public static double invSqrt(double x) { double xhalf = 0.5 * x; long i = Double.doubleToRawLongBits(x); i = 0x5FE6EB50C7B537AAL - (i>>1); x = Double.longBitsToDouble(i); x = x * (1.5 - xhalf*x*x); return x; } /** Approximation of arctangent. * Slightly faster and substantially less accurate than * {@link Math#atan2(double, double)}. **/ public static double fast_atan2(double y, double x) { double d2 = x*x + y*y; // Bail out if d2 is NaN, zero or subnormal if (Double.isNaN(d2) || (Double.doubleToRawLongBits(d2) < 0x10000000000000L)) { return Double.NaN; } // Normalise such that 0.0 <= y <= x boolean negY = y < 0.0; if (negY) {y = -y;} boolean negX = x < 0.0; if (negX) {x = -x;} boolean steep = y > x; if (steep) { double t = x; x = y; y = t; } // Scale to unit circle (0.0 <= y <= x <= 1.0) double rinv = invSqrt(d2); // rinv ? 1.0 / hypot(x, y) x *= rinv; // x ? cos ? y *= rinv; // y ? sin ?, hence ? ? asin y // Hack: we want: ind = floor(y * 256) // We deliberately force truncation by adding floating-point numbers whose // exponents differ greatly. The FPU will right-shift y to match exponents, // dropping all but the first 9 significant bits, which become the 9 LSBs // of the resulting mantissa. // Inspired by a similar piece of C code at // http://www.shellandslate.com/computermath101.html double yp = FRAC_BIAS + y; int ind = (int) Double.doubleToRawLongBits(yp); // Find ? (a first approximation of ?) from the LUT double ? = ASIN_TAB[ind]; double c? = COS_TAB[ind]; // cos(?) // sin(?) == ind / 256.0 // Note that s? is truncated, hence not identical to y. double s? = yp - FRAC_BIAS; double sd = y * c? - x * s?; // sin(?-?) ? sin? cos? - cos? sin? // asin(sd) ? sd + ?sd³ (from first 2 terms of Maclaurin series) double d = (6.0 + sd * sd) * sd * ONE_SIXTH; double ? = ? + d; // Translate back to correct octant if (steep) { ? = Math.PI * 0.5 - ?; } if (negX) { ? = Math.PI - ?; } if (negY) { ? = -?; } return ?; } private static final double ONE_SIXTH = 1.0 / 6.0; private static final int FRAC_EXP = 8; // LUT precision == 2 ** -8 == 1/256 private static final int LUT_SIZE = (1 << FRAC_EXP) + 1; private static final double FRAC_BIAS = Double.longBitsToDouble((0x433L - FRAC_EXP) << 52); private static final double[] ASIN_TAB = new double[LUT_SIZE]; private static final double[] COS_TAB = new double[LUT_SIZE]; static { /* Populate trig tables */ for (int ind = 0; ind < LUT_SIZE; ++ ind) { double v = ind / (double) (1 << FRAC_EXP); double asinv = Math.asin(v); COS_TAB[ind] = Math.cos(asinv); ASIN_TAB[ind] = asinv; } } }
这可能会成为:http://sourceforge.net/projects/jafama/