当前位置:  开发笔记 > 编程语言 > 正文

Prim的最小生成树

如何解决《Prim的最小生成树》经验,为你挑选了0个好方法。

我正在尝试使用Prim的Min Spanning Tree算法优化图形.但我没有得到理想的答案.

算法:

1. Construct min heap array. The array consists of nodes which have a vertex value 
and a key value. The key values are initialized to INT_MAX initially.

2. Make the zeroth node's key 0, as this is the starting node.

3. I iterate over the heap, till it becomes empty, and in every step following is done:
     - Extract the minimum element out of the min heap. This is done by extractMin()
       function in the class MinHeap. 

4. Look for this extracted element's neighbors and update their keys based on the weight of 
the corresponding edge.

5. Then decrease the key value in the minHeap by using decreaseKey() function in 
class MinHeap.

6. Store the parent and child for which the condition satisfies in a map called parent.

这是代码说明:

1. The code contains two header files, Graph.h and MinHeap.h. The functions are all std f
functions in these files. So there won't be any problem in understanding them.

2. The Graph.cpp file contains the PrimMST() function which does all the job and performs 
the entire algorithm.

这是问题所在:

1. When I extract a node from heap in PrimMST() function, I call extractMin() function 
defined in MinHeap.cpp file. This function swaps the top most node in the heap with the 
bottom most node. And then performs the heapify operation.


But, it is not performing this operation though I have called it in extractMin(). There's
no problem with minHeapify function which does the heapify operation as it does 
perform its job else where is the program.

这是我想要优化的图表:在此输入图像描述

这是程序:PS:我发布了包含所有头文件的整个代码,因此可以很容易地理解它.但是跳过代码并请观察Graph.cpp文件中的PrimMST()函数.

/***************GRAPH.H*******************************/

#ifndef GRAPH_H_
#define GRAPH_H_
#include 
#include 

using namespace std;

class AdjListNode{
    int v;
    int weight;
public:
    AdjListNode(int _v, int _w){ v = _v; weight = _w; }
    int getV()      { return v;  }
    int getWeight() { return weight;  }
};

class Graph{
    int V;                          // To store number of vertices in the graph
    list *adj; // This is a map for storing the adjacency list
    map mapping;           // A map to form a dictionary of vertex values to their array indexes for look ups.
    map parent;            // A map to store the parent child for a given edge in the graph
public:
    Graph(int);                     // Class constructor
    void HashTable(int *, int);     // This method uses the map library in STL to create a mappinh
                                    // of arbitrary integers to zero based array indexes
    int getHashedElt(int);          // This method returns the value corresponding to a given 
                                    // key in a hash table
    void addEdge(int, int, int);    // This method adds the second arg to the adj list of first arg.
    void printGraph();              // This method prints the adjacency list of all the vertices

    void PrimMST(int *, int);       // This function will perform the Prim's MST algorithm and optimize 
                                    // the number of nodes in the graph

};
#endif

/****************GRAPH.CPP*************************/
#include 
#include 
#include 
#include 
#include "Graph.h"
#include "MinHeap.h"

#define INF 9999

using namespace std;

Graph::Graph(int v){
    V = v;
    adj = new list[V];
}

 // This function takes in a pointer to array and its size as its arguments to create a hashtable.
// So. if you have 10,11,12,13,14,15 as the nodes.
// Create an array int arr[] {10,11,12,13,14,15}, and int size = sizeof(arr)/sizeof(arr[0])
// And pass it to this function this creates a dictionary named mapping for O(1) look up of 
// index by other functions.
void Graph::HashTable(int *nodeData, int size){
    for (int i = 0; i < size; i++){
            mapping[nodeData[i]] = i;
    }
    return;
}


// This method returns the value corresponding to a particular node in constant time.
int Graph::getHashedElt(int data){
    return mapping[data];
}

// This function creates an adjacency list for every vertex in the graph
void Graph::addEdge(int node1, int node2, int weight){
    AdjListNode node(node2, weight);
    int index = getHashedElt(node1);
    adj[index].push_back(node);
}


void Graph::printGraph(){
    list::iterator j;
    int i = 0;
    while (igetV() << "," << j->getWeight() << ")->";
            }
            if (!adj[i].empty())
                    cout << "NULL\n";
            i++;
    }
}

void Graph::PrimMST(int *arr, int size){
    MinHeap minHeap(arr,size);
    size_t key[V];  // Key values to pick minimum weight edge in cut

    for (int i = 1; i < V; i++){
            parent[arr[i]] = -1;    // All the parents are -1 initially
            key[i] = INT_MAX;       // Initially all the keys are initialised to positive infinity
            MinHeapNode *newNode = minHeap.newMinHeapNode(arr[i],key[i]);
            //cout << "("<< arr[i] << ", " << key[i] << ")\n";
            minHeap.insertNode(i, newNode);
    }

    // Make key value of 0th vertex as 0 so that it is extracted first.
    key[0] = 0;

    // This function insertNode creates a newNode with vertex number and associated key value.
    MinHeapNode *newNode = minHeap.newMinHeapNode(arr[0],key[0]);
    minHeap.insertNode(0, newNode);

    //minHeap.printHeap();  

 while (!minHeap.isEmpty()){
            // Extract the vertex with minimum key value
            minHeap.printHeap();
            MinHeapNode *minNode = minHeap.extractMin();
            // Get the vertex of this minNode.
            int u = minNode->v;
            cout << "\n";
            minHeap.printHeap();
            cout << "\n\n\n";
            //cout << u << "\n";
            // Traverse through all the adjacent vertices of u (extended vertex)
            // and update their key values
            list::iterator j;
            for (j = adj[mapping[u]].begin(); j != adj[mapping[u]].end(); j++)  {
                    int v = j->getV();
                    // If v is not yet included in the MST and weight of u-v
                    // is less than key value of v, then update key value
                    // and parent of v
                    if (minHeap.isInMinHeap(v) && j->getWeight() < key[mapping[v]]){
                            key[mapping[v]] = j->getWeight();
    //                      cout << key[mapping[v]] << "\n";
                            parent[v] = u;
                            minHeap.decreaseKey(v,key[mapping[v]]);
                    }
            }
    }
    for (int k = 1; k < size; k++){
            //cout <

using namespace std;

struct MinHeapNode{
    int v;
    size_t key;
};

class MinHeap{
    int size;               // Number of heap nodes present in the heap at any given time
    int capacity;           // Capacity of min heap
    map pos;       // This is map which stores the array index of a given vertex, for O(1) look up
    MinHeapNode **MinHeapArray;     // This array containe pointers to all the heap nodes.

public:
    MinHeap(int*,int);      // Class constructor, it will allocate space to minHeap and initialise all the variables.
                            // It also creates the map of every vertex to an index, so that there is O(1) look up.
    MinHeapNode *newMinHeapNode(int,size_t);   // This function creates a new min heap node with a given value of vertex and weight
    int getIndex(int);                      // This function returns the index of a given vertex in pos map.
    void insertNode(int,MinHeapNode *);             // This function inserts a node into the MinHeapArray.
    void printHeap();
    void swapMinHeapNode(MinHeapNode **, MinHeapNode **); // It will perform swap operation in the heap.
    void minHeapify(int);      // Standard function to heapify at given idx.
    bool isEmpty();         // A utility function to check whether given heap is empty or not.
    bool isInMinHeap(int);  // Checks whether given vertex in the heap or not
    MinHeapNode *extractMin();      // Std func to extract to minimum node from the heap.
    void decreaseKey(int,int);      // This func performs the decreaseKey op by making use of pos map.

};

#endif


/***************MINHEAP.CPP***************************/
#include 
#include 
#include 
#include 
#include "MinHeap.h"

using namespace std;

MinHeap::MinHeap(int *arr,int s){
    size = 0;
    capacity = s;
    MinHeapArray = (MinHeapNode **)malloc(sizeof(MinHeapNode *)*s);
    for (int i = 0; i < s; i++){
            pos[arr[i]] = i;        // This is a mapping from vertex to array index i. This will enable O(1) access of any var in heap.
    }
}

MinHeapNode *MinHeap::newMinHeapNode(int v, size_t key){
    MinHeapNode *node = new MinHeapNode;
    node->v = v;
    node->key = key;
    return node;
}

int MinHeap::getIndex(int v){
    return pos[v];
}

void MinHeap::insertNode(int idx, MinHeapNode *node){
    MinHeapArray[idx] = node;
    size++;
}

bool MinHeap::isEmpty(){
    return size == 0;
}

bool MinHeap::isInMinHeap(int v){
    if (pos[v] < size)
            return true;
    return false;
}


void MinHeap::printHeap(){
    for (int i = 0; i < size; i++){
            cout << MinHeapArray[i]->v << ", "<< MinHeapArray[i]->key << "\n";
    }
}

void MinHeap::swapMinHeapNode(MinHeapNode **a, MinHeapNode **b){
    MinHeapNode *t = *a;
    *a = *b;
    *b = t;
}

// A standard function to heapify at given index idx
// This function also updates position of nodes when they are swapped.
void MinHeap::minHeapify(int idx){
    int smallest, left, right;
    left = (2*idx + 1);
    right = (2*idx + 2);
    smallest = idx;

    if (left < size && MinHeapArray[left]->key < MinHeapArray[smallest]->key)
            smallest = left;
    if (right < size && MinHeapArray[right]->key < MinHeapArray[smallest]->key)
            smallest = right;
    if (smallest != idx){
            // To nodes to be swapped in min heap
            MinHeapNode *smallestNode = MinHeapArray[smallest];
            MinHeapNode *idxNode = MinHeapArray[idx];

            // Change the mapping of vertices in pos map.
            pos[smallestNode->v] = idx;
            pos[idxNode->v] = smallest;

            // Swap Nodes using swapMinHeapNode utility function
            MinHeap::swapMinHeapNode(&smallestNode, &idxNode);
            minHeapify(smallest);
    }
    return;
}

 MinHeapNode *MinHeap::extractMin(){
    if (isEmpty())
            return NULL;

    // Store the root node
    MinHeapNode *root = MinHeapArray[0];

    // Replace the root with last node
    MinHeapNode *lastNode = MinHeapArray[size-1];
    MinHeapArray[0] = lastNode;

    // Update position of last node
    pos[root->v] = size - 1;
    pos[lastNode->v] = 0;

    // Reduce heap size and heapify root
    size--;
    MinHeap::minHeapify(0);

    return root;
}

void MinHeap::decreaseKey(int v, int key){
    // Get the index of v in heap array
    int i = pos[v];

    // Get the node and update its key value
    MinHeapArray[i]->key = key;

    // Travel up till the complete tree is not heapified.
    // This is O(logn) loop
    while (i && MinHeapArray[i]->key < MinHeapArray[(i-1)/2]->key){
            // Swap this node with its parent

            // First update the pos matrix
            pos[MinHeapArray[i]->v] = (i-1)/2;
            pos[MinHeapArray[(i-1)/2]->v] = i;

            // Do the swapping now.
            MinHeap::swapMinHeapNode(&MinHeapArray[i], &MinHeapArray[(i-1)/2]);

            // move to the parent index in the next iteration
            i = (i - 1)/2;
    }
    return;
}



/**********************MAIN FUNCTION CALL***************/
#include 
#include "Graph.h"
#include "MinHeap.h"

using namespace std;

int main(){
    int arr[] = {0,1,2,3,4,5,6,7,8};        // An array with all the vertices
    int size = sizeof(arr)/sizeof(arr[0]);

    Graph g(size);
    g.HashTable(arr,size);
    g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);
    //g.printGraph();
    g.PrimMST(arr,size);
    return 0;
}

有了这个输入,我得到了错误的输出.请注意,通过在调用extractMin()之前和之后调用printHeap来获取此输出.并且可以看出,即使每次提取节点时在extractMin()中调用minHeapify(0).它以某种方式不执行操作,因此堆没有堆化,导致错误的结果Sample输出,前3次迭代:

First Iteration:

0, 0
1, 2147483647
2, 2147483647
3, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
7, 2147483647
8, 2147483647

8, 2147483647
1, 2147483647
2, 2147483647
3, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
7, 214748364


Second Iteration:
1, 4
7, 8
2, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
3, 2147483647

3, 2147483647
7, 8
2, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647 

Third Iteration:
2, 8
7, 8
3, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647

6, 2147483647
7, 8
3, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647

请注意第二次和第三次迭代,这些都没有堆积,即使我最后在extractMin()函数中调用了minHeapify函数.

我迫切需要帮助.

推荐阅读
无名有名我无名_593
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有