我想使用主成分分析(PCA)来降低维数.numpy或scipy已经拥有它,还是我必须自己使用numpy.linalg.eigh
?
我不只是想使用奇异值分解(SVD),因为我的输入数据是相当高维的(~460维),所以我认为SVD比计算协方差矩阵的特征向量慢.
我希望找到一个预制的,已调试的实现,它已经为何时使用哪种方法做出了正确的决定,并且可能做了其他我不了解的优化.
几个月后,这里有一个小班PCA和一张图片:
#!/usr/bin/env python """ a small class for Principal Component Analysis Usage: p = PCA( A, fraction=0.90 ) In: A: an array of e.g. 1000 observations x 20 variables, 1000 rows x 20 columns fraction: use principal components that account for e.g. 90 % of the total variance Out: p.U, p.d, p.Vt: from numpy.linalg.svd, A = U . d . Vt p.dinv: 1/d or 0, see NR p.eigen: the eigenvalues of A*A, in decreasing order (p.d**2). eigen[j] / eigen.sum() is variable j's fraction of the total variance; look at the first few eigen[] to see how many PCs get to 90 %, 95 % ... p.npc: number of principal components, e.g. 2 if the top 2 eigenvalues are >= `fraction` of the total. It's ok to change this; methods use the current value. Methods: The methods of class PCA transform vectors or arrays of e.g. 20 variables, 2 principal components and 1000 observations, using partial matrices U' d' Vt', parts of the full U d Vt: A ~ U' . d' . Vt' where e.g. U' is 1000 x 2 d' is diag([ d0, d1 ]), the 2 largest singular values Vt' is 2 x 20. Dropping the primes, d . Vt 2 principal vars = p.vars_pc( 20 vars ) U 1000 obs = p.pc_obs( 2 principal vars ) U . d . Vt 1000 obs, p.obs( 20 vars ) = pc_obs( vars_pc( vars )) fast approximate A . vars, using the `npc` principal components Ut 2 pcs = p.obs_pc( 1000 obs ) V . dinv 20 vars = p.pc_vars( 2 principal vars ) V . dinv . Ut 20 vars, p.vars( 1000 obs ) = pc_vars( obs_pc( obs )), fast approximate Ainverse . obs: vars that give ~ those obs. Notes: PCA does not center or scale A; you usually want to first A -= A.mean(A, axis=0) A /= A.std(A, axis=0) with the little class Center or the like, below. See also: http://en.wikipedia.org/wiki/Principal_component_analysis http://en.wikipedia.org/wiki/Singular_value_decomposition Press et al., Numerical Recipes (2 or 3 ed), SVD PCA micro-tutorial iris-pca .py .png """ from __future__ import division import numpy as np dot = np.dot # import bz.numpyutil as nu # dot = nu.pdot __version__ = "2010-04-14 apr" __author_email__ = "denis-bz-py at t-online dot de" #............................................................................... class PCA: def __init__( self, A, fraction=0.90 ): assert 0 <= fraction <= 1 # A = U . diag(d) . Vt, O( m n^2 ), lapack_lite -- self.U, self.d, self.Vt = np.linalg.svd( A, full_matrices=False ) assert np.all( self.d[:-1] >= self.d[1:] ) # sorted self.eigen = self.d**2 self.sumvariance = np.cumsum(self.eigen) self.sumvariance /= self.sumvariance[-1] self.npc = np.searchsorted( self.sumvariance, fraction ) + 1 self.dinv = np.array([ 1/d if d > self.d[0] * 1e-6 else 0 for d in self.d ]) def pc( self ): """ e.g. 1000 x 2 U[:, :npc] * d[:npc], to plot etc. """ n = self.npc return self.U[:, :n] * self.d[:n] # These 1-line methods may not be worth the bother; # then use U d Vt directly -- def vars_pc( self, x ): n = self.npc return self.d[:n] * dot( self.Vt[:n], x.T ).T # 20 vars -> 2 principal def pc_vars( self, p ): n = self.npc return dot( self.Vt[:n].T, (self.dinv[:n] * p).T ) .T # 2 PC -> 20 vars def pc_obs( self, p ): n = self.npc return dot( self.U[:, :n], p.T ) # 2 principal -> 1000 obs def obs_pc( self, obs ): n = self.npc return dot( self.U[:, :n].T, obs ) .T # 1000 obs -> 2 principal def obs( self, x ): return self.pc_obs( self.vars_pc(x) ) # 20 vars -> 2 principal -> 1000 obs def vars( self, obs ): return self.pc_vars( self.obs_pc(obs) ) # 1000 obs -> 2 principal -> 20 vars class Center: """ A -= A.mean() /= A.std(), inplace -- use A.copy() if need be uncenter(x) == original A . x """ # mttiw def __init__( self, A, axis=0, scale=True, verbose=1 ): self.mean = A.mean(axis=axis) if verbose: print "Center -= A.mean:", self.mean A -= self.mean if scale: std = A.std(axis=axis) self.std = np.where( std, std, 1. ) if verbose: print "Center /= A.std:", self.std A /= self.std else: self.std = np.ones( A.shape[-1] ) self.A = A def uncenter( self, x ): return np.dot( self.A, x * self.std ) + np.dot( x, self.mean ) #............................................................................... if __name__ == "__main__": import sys csv = "iris4.csv" # wikipedia Iris_flower_data_set # 5.1,3.5,1.4,0.2 # ,Iris-setosa ... N = 1000 K = 20 fraction = .90 seed = 1 exec "\n".join( sys.argv[1:] ) # N= ... np.random.seed(seed) np.set_printoptions( 1, threshold=100, suppress=True ) # .1f try: A = np.genfromtxt( csv, delimiter="," ) N, K = A.shape except IOError: A = np.random.normal( size=(N, K) ) # gen correlated ? print "csv: %s N: %d K: %d fraction: %.2g" % (csv, N, K, fraction) Center(A) print "A:", A print "PCA ..." , p = PCA( A, fraction=fraction ) print "npc:", p.npc print "% variance:", p.sumvariance * 100 print "Vt[0], weights that give PC 0:", p.Vt[0] print "A . Vt[0]:", dot( A, p.Vt[0] ) print "pc:", p.pc() print "\nobs <-> pc <-> x: with fraction=1, diffs should be ~ 0" x = np.ones(K) # x = np.ones(( 3, K )) print "x:", x pc = p.vars_pc(x) # d' Vt' x print "vars_pc(x):", pc print "back to ~ x:", p.pc_vars(pc) Ax = dot( A, x.T ) pcx = p.obs(x) # U' d' Vt' x print "Ax:", Ax print "A'x:", pcx print "max |Ax - A'x|: %.2g" % np.linalg.norm( Ax - pcx, np.inf ) b = Ax # ~ back to original x, Ainv A x back = p.vars(b) print "~ back again:", back print "max |back - x|: %.2g" % np.linalg.norm( back - x, np.inf ) # end pca.py
PCA使用numpy.linalg.svd
非常简单.这是一个简单的演示:
import numpy as np import matplotlib.pyplot as plt from scipy.misc import lena # the underlying signal is a sinusoidally modulated image img = lena() t = np.arange(100) time = np.sin(0.1*t) real = time[:,np.newaxis,np.newaxis] * img[np.newaxis,...] # we add some noise noisy = real + np.random.randn(*real.shape)*255 # (observations, features) matrix M = noisy.reshape(noisy.shape[0],-1) # singular value decomposition factorises your data matrix such that: # # M = U*S*V.T (where '*' is matrix multiplication) # # * U and V are the singular matrices, containing orthogonal vectors of # unit length in their rows and columns respectively. # # * S is a diagonal matrix containing the singular values of M - these # values squared divided by the number of observations will give the # variance explained by each PC. # # * if M is considered to be an (observations, features) matrix, the PCs # themselves would correspond to the rows of S^(1/2)*V.T. if M is # (features, observations) then the PCs would be the columns of # U*S^(1/2). # # * since U and V both contain orthonormal vectors, U*V.T is equivalent # to a whitened version of M. U, s, Vt = np.linalg.svd(M, full_matrices=False) V = Vt.T # PCs are already sorted by descending order # of the singular values (i.e. by the # proportion of total variance they explain) # if we use all of the PCs we can reconstruct the noisy signal perfectly S = np.diag(s) Mhat = np.dot(U, np.dot(S, V.T)) print "Using all PCs, MSE = %.6G" %(np.mean((M - Mhat)**2)) # if we use only the first 20 PCs the reconstruction is less accurate Mhat2 = np.dot(U[:, :20], np.dot(S[:20, :20], V[:,:20].T)) print "Using first 20 PCs, MSE = %.6G" %(np.mean((M - Mhat2)**2)) fig, [ax1, ax2, ax3] = plt.subplots(1, 3) ax1.imshow(img) ax1.set_title('true image') ax2.imshow(noisy.mean(0)) ax2.set_title('mean of noisy images') ax3.imshow((s[0]**(1./2) * V[:,0]).reshape(img.shape)) ax3.set_title('first spatial PC') plt.show()
你可以使用sklearn:
import sklearn.decomposition as deco import numpy as np x = (x - np.mean(x, 0)) / np.std(x, 0) # You need to normalize your data first pca = deco.PCA(n_components) # n_components is the components number after reduction x_r = pca.fit(x).transform(x) print ('explained variance (first %d components): %.2f'%(n_components, sum(pca.explained_variance_ratio_)))
matplotlib.mlab有一个PCA实现.
您可以查看MDP.
我自己没有机会测试它,但我已经将它完全标记为PCA功能.
SVD应该可以正常工作460维.我的Atom上网本大约需要7秒钟.eig()方法需要更多时间(因为它应该使用更多的浮点运算)并且几乎总是不太准确.
如果您的示例少于460个,那么您想要做的是对散化矩阵(x - datamean)^ T(x - mean),假设您的数据点是列,然后左乘(x - datamean).如果您的维度多于数据,那么这可能会更快.
你可以很容易地"滚动"你自己的使用scipy.linalg
(假设一个预先居中的数据集data
):
covmat = data.dot(data.T) evs, evmat = scipy.linalg.eig(covmat)
那么evs
你的特征值evmat
是你的投影矩阵.
如果要保持d
尺寸,请使用第一个d
特征值和第一个d
特征向量.
鉴于scipy.linalg
分解和numpy矩阵乘法,你还需要什么?
我刚刚读完了机器学习:算法视角这本书.本书中的所有代码示例都是由Python编写的(几乎与Numpy一起编写).chatper10.2主要组件分析的代码片段可能值得一读.它使用numpy.linalg.eig.
顺便说一句,我认为SVD可以很好地处理460*460尺寸.我在一台非常老的PC上用numpy/scipy.linalg.svd计算了6500*6500 SVD:Pentium III 733mHz.说实话,脚本需要大量内存(约1.xG)和大量时间(约30分钟)才能获得SVD结果.但我认为现代PC上的460*460不会是一个大问题,除非你需要做很多次SVD.
您不需要完整的奇异值分解(SVD)来计算所有特征值和特征向量,并且对于大型矩阵来说可能是禁止的. scipy及其稀疏模块提供了在稀疏和密集矩阵上工作的通用线性algrebra函数,其中有eig*函数族:
http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#matrix-factorizations
Scikit-learn提供了一个Python PCA实现,目前只支持密集矩阵.
时间:
In [1]: A = np.random.randn(1000, 1000) In [2]: %timeit scipy.sparse.linalg.eigsh(A) 1 loops, best of 3: 802 ms per loop In [3]: %timeit np.linalg.svd(A) 1 loops, best of 3: 5.91 s per loop