当前位置:  开发笔记 > 编程语言 > 正文

Python pandas数据帧插入缺失的数据

如何解决《Pythonpandas数据帧插入缺失的数据》经验,为你挑选了1个好方法。

我有一个如下的数据集.我们只有一个月的最后一天的数据,我试图插入剩余的数据,这是正确的做法吗?

Date  Australia China
2011-01-01  NaN   NaN
2011-01-02  NaN   NaN
-           -     -
-           -     -
2011-01-31  4.75  5.81
2011-02-01  NaN   NaN
2011-02-02  NaN   NaN
-           -     -
-           -     -
2011-02-28  4.75  5.81
2011-03-01  NaN   NaN
2011-03-02  NaN   NaN
-           -     -
-           -     -
2011-03-31  4.75  6.06
2011-04-01  NaN   NaN
2011-04-02  NaN   NaN
-           -     -
-           -     -
2011-04-30  4.75  6.06

为了插入此数据帧以查找缺少的NaN值,我使用以下代码

import pandas as pd
df = pd.read_csv("data.csv", index_col="Date")
df.index = pd.DatetimeIndex(df.index)
df.interpolate(method='linear', axis=0).ffill().bfill()

但我得到一个错误"TypeError:无法插入所有NaN."

这里可能有什么问题,我该如何解决这个问题?

谢谢.



1> jezrael..:

您可以尝试转换dataframefloat通过astype:

import pandas as pd

df = pd.read_csv("data.csv", index_col=['Date'], parse_dates=['Date'])

print df

            Australia  China
Date                        
2011-01-31       4.75   5.81
2011-02-28       4.75   5.81
2011-03-31       4.75   6.06
2011-04-30       4.75   6.06

df = df.reindex(pd.date_range("2011-01-01", "2011-10-31"), fill_value="NaN")

#convert to float
df = df.astype(float)

df = df.interpolate(method='linear', axis=0).ffill().bfill()
print df

            Australia  China
2011-01-01       4.75   5.81
2011-01-02       4.75   5.81
2011-01-03       4.75   5.81
2011-01-04       4.75   5.81
2011-01-05       4.75   5.81
2011-01-06       4.75   5.81
2011-01-07       4.75   5.81
2011-01-08       4.75   5.81
2011-01-09       4.75   5.81
2011-01-10       4.75   5.81
2011-01-11       4.75   5.81
2011-01-12       4.75   5.81
2011-01-13       4.75   5.81
2011-01-14       4.75   5.81
2011-01-15       4.75   5.81
2011-01-16       4.75   5.81
2011-01-17       4.75   5.81
2011-01-18       4.75   5.81
2011-01-19       4.75   5.81
2011-01-20       4.75   5.81
2011-01-21       4.75   5.81
2011-01-22       4.75   5.81
2011-01-23       4.75   5.81
2011-01-24       4.75   5.81
2011-01-25       4.75   5.81
2011-01-26       4.75   5.81
2011-01-27       4.75   5.81
2011-01-28       4.75   5.81
2011-01-29       4.75   5.81
2011-01-30       4.75   5.81
...               ...    ...
2011-10-02       4.75   6.06
2011-10-03       4.75   6.06
2011-10-04       4.75   6.06
2011-10-05       4.75   6.06
2011-10-06       4.75   6.06
2011-10-07       4.75   6.06
2011-10-08       4.75   6.06
2011-10-09       4.75   6.06
2011-10-10       4.75   6.06
2011-10-11       4.75   6.06
2011-10-12       4.75   6.06
2011-10-13       4.75   6.06
2011-10-14       4.75   6.06
2011-10-15       4.75   6.06
2011-10-16       4.75   6.06
2011-10-17       4.75   6.06
2011-10-18       4.75   6.06
2011-10-19       4.75   6.06
2011-10-20       4.75   6.06
2011-10-21       4.75   6.06
2011-10-22       4.75   6.06
2011-10-23       4.75   6.06
2011-10-24       4.75   6.06
2011-10-25       4.75   6.06
2011-10-26       4.75   6.06
2011-10-27       4.75   6.06
2011-10-28       4.75   6.06
2011-10-29       4.75   6.06
2011-10-30       4.75   6.06
2011-10-31       4.75   6.06

[304 rows x 2 columns]

你可以省略ffill(),因为NaN只有第一行dataframe:

df = df.interpolate(method='linear', axis=0).ffill().bfill()

至:

df = df.interpolate(method='linear', axis=0).bfill()

推荐阅读
臭小子
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有