当前位置:  开发笔记 > 小程序 > 正文

设计一种有效的算法,在少于8次比较中对5个不同的密钥进行排序

如何解决《设计一种有效的算法,在少于8次比较中对5个不同的密钥进行排序》经验,为你挑选了4个好方法。

设计一种有效的算法来排序5个不同的 - 非常大的 - 密钥,在最坏的情况下少于8个比较.你不能使用基数排序.



1> Beta..:

比较A到B和C到D. WLOG,假设A> B和C> D. 比较A到C. WLOG,假设A> C. 将E排序为ACD.这可以通过两次比较来完成.将B排序为{E,C,D}.这可以通过两次比较来完成,总共七次.


是.你说的那些可以是3,总是可以在2完成.

2> Artelius..:

这是基于Beta答案的伪代码.因为我匆忙做了这件事,可能会有一些错误.

if (A > B)
    swap A, B
if (C > D)
    swap C, D
if (A > C)
    swap A, C
    swap B, D  # Thanks Deqing!

if (E > C)
    if (E > D) %A C D E
        if (B > D)
            if (B > E)
                return (A, C, D, E, B)
            else
                return (A, C, D, B, E)
         else
            if (B < C)
                return (A, B, C, D, E)
            else
                return (A, C, B, D, E)

    else %A C E D
        if (B > E)
            if (B > D)
                return (A, C, E, D, B)
            else
                return (A, C, E, B, D)
         else
            if (B < C)
                return (A, B, C, E, D)
            else
                return (A, C, B, E, D)
else
    if (E < A) % E A C D
        if (B > C)
            if (B > D)
                return (E, A, C, D, B)
            else
                return (E, A, C, B, D)
         else
             return (E, A, B, C, D)

    else %A E C D
        if (B > C)
            if (B > D)
                return (A, E, C, D, B)
            else
                return (A, E, C, B, D)
         else
            if (B < E)
                return (A, B, E, C, D)
            else
                return (A, E, B, C, D)



3> Daniel Brück..:

由于log 2(5!)= 6.9,因此可以在最差的投射中对五个项目进行七次比较进行排序.我建议检查是否有任何标准排序算法达到这个数字 - 如果不是这样,由于所需的比较数量较少,因此很难对比较序列进行硬编码.

我建议编写一个程序来查找比较序列.创建一个包含数字1到5的所有120种排列的列表.然后尝试所有十个可能的比较并选择那个,在两个相同大小的列表中尽可能好地分割列表.执行此拆分并以递归方式将相同的过程应用于两个列表.

我写了一个小程序来完成这个,这就是结果.

Comparison 1: 0-1 [60|60] // First comparison item 0 with item 1, splits case 60/60
Comparison 2: 2-3 [30|30] // Second comparison for the first half of the first comparison
Comparison 3: 0-2 [15|15] // Third comparison for the first half of the second comparison for the first half of first comparison
Comparison 4: 2-4 [8|7]
Comparison 5: 3-4 [4|4]
Comparison 6: 1-3 [2|2]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 6: 1-4 [2|2]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 5: 0-4 [4|3]
Comparison 6: 1-2 [2|2]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 6: 1-2 [1|2]
Comparison 7: 1-3 [1|1]
Comparison 4: 0-4 [8|7]
Comparison 5: 1-4 [4|4]
Comparison 6: 1-3 [2|2]
Comparison 7: 3-4 [1|1]
Comparison 7: 0-3 [1|1]
Comparison 6: 3-4 [2|2]
Comparison 7: 0-3 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 5: 0-3 [4|3]
Comparison 6: 1-3 [2|2]
Comparison 7: 2-4 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 6: 2-4 [2|1]
Comparison 7: 3-4 [1|1]
Comparison 3: 0-3 [15|15] // Third comparison for the second half of the second comparison for the first half of first comparison
Comparison 4: 3-4 [8|7]
Comparison 5: 2-4 [4|4]
Comparison 6: 1-2 [2|2]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 6: 1-4 [2|2]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 5: 0-4 [4|3]
Comparison 6: 1-3 [2|2]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 6: 1-2 [2|1]
Comparison 7: 1-3 [1|1]
Comparison 4: 0-4 [8|7]
Comparison 5: 1-4 [4|4]
Comparison 6: 1-2 [2|2]
Comparison 7: 2-4 [1|1]
Comparison 7: 0-2 [1|1]
Comparison 6: 2-4 [2|2]
Comparison 7: 0-2 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 5: 0-2 [4|3]
Comparison 6: 1-2 [2|2]
Comparison 7: 3-4 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 6: 2-4 [1|2]
Comparison 7: 3-4 [1|1]
Comparison 2: 2-3 [30|30] // Second comparison for the second half of the first comparison
Comparison 3: 0-3 [15|15]
Comparison 4: 0-4 [7|8]
Comparison 5: 0-2 [3|4]
Comparison 6: 2-4 [2|1]
Comparison 7: 3-4 [1|1]
Comparison 6: 1-2 [2|2]
Comparison 7: 3-4 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 5: 1-4 [4|4]
Comparison 6: 2-4 [2|2]
Comparison 7: 1-2 [1|1]
Comparison 7: 0-2 [1|1]
Comparison 6: 1-2 [2|2]
Comparison 7: 0-2 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 4: 3-4 [7|8]
Comparison 5: 0-4 [3|4]
Comparison 6: 1-2 [1|2]
Comparison 7: 1-3 [1|1]
Comparison 6: 1-3 [2|2]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 5: 2-4 [4|4]
Comparison 6: 1-4 [2|2]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 6: 1-2 [2|2]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 3: 0-2 [15|15]
Comparison 4: 0-4 [7|8]
Comparison 5: 0-3 [3|4]
Comparison 6: 2-4 [1|2]
Comparison 7: 3-4 [1|1]
Comparison 6: 1-3 [2|2]
Comparison 7: 2-4 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 5: 1-4 [4|4]
Comparison 6: 3-4 [2|2]
Comparison 7: 1-3 [1|1]
Comparison 7: 0-3 [1|1]
Comparison 6: 1-3 [2|2]
Comparison 7: 0-3 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 4: 2-4 [7|8]
Comparison 5: 0-4 [3|4]
Comparison 6: 1-2 [2|1]
Comparison 7: 1-3 [1|1]
Comparison 6: 1-2 [2|2]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 5: 3-4 [4|4]
Comparison 6: 1-4 [2|2]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 6: 1-3 [2|2]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-2 [1|1]

但现在问题是如何以有效的方式实现这一点.也许可以使用查找表来存储比较序列.我也不确定如何以有效的方式从这个比较序列中导出有序输出.

通过比较从上面对结果进行排序揭示了第一次比较的明显结构,但随着比较数量的增加,它变得更难.所有块都围绕中间对称-----.

Comparison 1: 0-1 [60|60]

Comparison 2: 2-3 [30|30]
Comparison 2: 2-3 [30|30]

Comparison 3: 0-2 [15|15]
Comparison 3: 0-3 [15|15]
-----
Comparison 3: 0-3 [15|15]
Comparison 3: 0-2 [15|15]

Comparison 4: 2-4 [8|7]
Comparison 4: 0-4 [8|7]
Comparison 4: 3-4 [8|7]
Comparison 4: 0-4 [8|7]
-----
Comparison 4: 0-4 [7|8]
Comparison 4: 3-4 [7|8]
Comparison 4: 0-4 [7|8]
Comparison 4: 2-4 [7|8]

Comparison 5: 3-4 [4|4]
Comparison 5: 0-4 [4|3]
Comparison 5: 1-4 [4|4]
Comparison 5: 0-3 [4|3]
Comparison 5: 2-4 [4|4]
Comparison 5: 0-4 [4|3]
Comparison 5: 1-4 [4|4]
Comparison 5: 0-2 [4|3]
-----
Comparison 5: 0-2 [3|4]
Comparison 5: 1-4 [4|4]
Comparison 5: 0-4 [3|4]
Comparison 5: 2-4 [4|4]
Comparison 5: 0-3 [3|4]
Comparison 5: 1-4 [4|4]
Comparison 5: 0-4 [3|4]
Comparison 5: 3-4 [4|4]

Comparison 6: 1-3 [2|2]
Comparison 6: 1-4 [2|2]
Comparison 6: 1-2 [2|2]
Comparison 6: 1-2 [1|2]
Comparison 6: 1-3 [2|2]
Comparison 6: 3-4 [2|2]
Comparison 6: 1-3 [2|2]
Comparison 6: 2-4 [2|1]
Comparison 6: 1-2 [2|2]
Comparison 6: 1-4 [2|2]
Comparison 6: 1-3 [2|2]
Comparison 6: 1-2 [2|1]
Comparison 6: 1-2 [2|2]
Comparison 6: 2-4 [2|2]
Comparison 6: 1-2 [2|2]
Comparison 6: 2-4 [1|2]
-----
Comparison 6: 2-4 [2|1]
Comparison 6: 1-2 [2|2]
Comparison 6: 2-4 [2|2]
Comparison 6: 1-2 [2|2]
Comparison 6: 1-2 [1|2]
Comparison 6: 1-3 [2|2]
Comparison 6: 1-2 [2|2]
Comparison 6: 1-4 [2|2]
Comparison 6: 2-4 [1|2]
Comparison 6: 1-3 [2|2]
Comparison 6: 3-4 [2|2]
Comparison 6: 1-3 [2|2]
Comparison 6: 1-2 [2|1]
Comparison 6: 1-2 [2|2]
Comparison 6: 1-4 [2|2]
Comparison 6: 1-3 [2|2]

Comparison 7: 1-2 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 0-3 [1|1]
Comparison 7: 0-3 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 7: 0-2 [1|1]
Comparison 7: 0-2 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 3-4 [1|1]
-----
Comparison 7: 3-4 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 0-2 [1|1]
Comparison 7: 0-2 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 7: 2-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 0-3 [1|1]
Comparison 7: 0-3 [1|1]
Comparison 7: 3-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-3 [1|1]
Comparison 7: 1-2 [1|1]
Comparison 7: 1-4 [1|1]
Comparison 7: 1-2 [1|1]



4> Artelius..:

它必须是7次或更多次比较.

有5个物体的120(5个因子)方式被安排.使用6次比较的算法只能区分2 ^ 6 = 64种不同的初始排列,因此使用6次或更少比较的算法无法对所有可能的输入进行排序.

可能有一种方法只使用7次比较进行排序.如果您只想对5个元素进行排序,那么可以通过强力发现(或证明不存在)这样的算法.

推荐阅读
ar_wen2402851455
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有