当前位置:  开发笔记 > 编程语言 > 正文

为什么我收到数据转换警告?

如何解决《为什么我收到数据转换警告?》经验,为你挑选了1个好方法。

我是这方面的新手,所以我很感激你的帮助.我正在玩mnist数据集.我从http://g.sweyla.com/blog/2012/mnist-numpy/获取了代码,但将"images"更改为2维,以便每个图像都是特征向量.然后我在数据上运行PCA,然后运行SVM并检查分数.一切似乎工作正常,但我得到以下警告,我不知道为什么.

"DataConversionWarning: A column-vector y was passed when a 1d array was expected.\
Please change the shape of y to (n_samples, ), for example using ravel()."

我尝试了几件事,但似乎无法摆脱这个警告.有什么建议?这是完整的代码(忽略缺少的缩进,似乎他们有点混乱在这里复制代码):

import os, struct
from array import array as pyarray
from numpy import append, array, int8, uint8, zeros, arange
from sklearn import svm, decomposition
#from pylab import *
#from matplotlib import pyplot as plt

def load_mnist(dataset="training", digits=arange(10), path="."):
"""
Loads MNIST files into 3D numpy arrays

Adapted from: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py
"""

    if dataset == "training":
        fname_img = os.path.join(path, 'train-images.idx3-ubyte')
        fname_lbl = os.path.join(path, 'train-labels.idx1-ubyte')
    elif dataset == "testing":
        fname_img = os.path.join(path, 't10k-images.idx3-ubyte')
        fname_lbl = os.path.join(path, 't10k-labels.idx1-ubyte')
    else:
        raise ValueError("dataset must be 'testing' or 'training'")

    flbl = open(fname_lbl, 'rb')
    magic_nr, size = struct.unpack(">II", flbl.read(8))
    lbl = pyarray("b", flbl.read())
    flbl.close()

    fimg = open(fname_img, 'rb')
    magic_nr, size, rows, cols = struct.unpack(">IIII", fimg.read(16))
    img = pyarray("B", fimg.read())
    fimg.close()

    ind = [ k for k in range(size) if lbl[k] in digits ]
    N = len(ind)

    images = zeros((N, rows*cols), dtype=uint8)
    labels = zeros((N, 1), dtype=int8)
    for i in range(len(ind)):
        images[i] = array(img[ ind[i]*rows*cols : (ind[i]+1)*rows*cols ])
        labels[i] = lbl[ind[i]]

    return images, labels

if __name__ == "__main__":
    images, labels = load_mnist('training', arange(10),"path...")
    pca = decomposition.PCA()
    pca.fit(images)
    pca.n_components = 200
    images_reduced = pca.fit_transform(images)
    lin_classifier = svm.LinearSVC()
    lin_classifier.fit(images_reduced, labels)
    images2, labels2 = load_mnist('testing', arange(10),"path...")
    images2_reduced = pca.transform(images2)
    score = lin_classifier.score(images2_reduced,labels2)
    print score

谢谢您的帮助!



1> Dthal..:

我认为scikit-learn希望y成为一维阵列.你的labels变量是2-D - labels.shape是(N,1).警告告诉您使用labels.ravel(),它将labels变成一维阵列,形状为(N,).
重塑也会起作用:labels=labels.reshape((N,))
来想一想,所以会调用挤压:labels=labels.squeeze()

我想这里的问题是,在numpy中,1-D数组与2-D数组不同,其中一个维度等于1.

推荐阅读
谢谢巷议
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有