弗兰克·哈雷尔(Frank Harrell)的R包rms是实现多重逻辑回归的绝佳工具。但是,我想知道如何/是否有可能将随机效应纳入通过均方根的模型中。我知道rms可以通过nlme运行,但是只能通过广义最小二乘函数(Gls)运行,而不能通过lme函数运行,因此可以纳入随机效应。混合效应模型对于分析/解释可能会出现问题,但有时是必需的,以便考虑模型中的嵌套效应。
我不确定在这种情况下是否有用,但是我已经从rms帮助文件中复制了一些代码,这些文件运行了简单的逻辑回归模型,并添加了一行代码,表明通过MASS软件包的glmmPQL运行的混合效应逻辑回归模型。
n <- 1000 # define sample size require(rms) set.seed(17) # so can reproduce the results age <- rnorm(n, 50, 10) blood.pressure <- rnorm(n, 120, 15) cholesterol <- rnorm(n, 200, 25) sex <- factor(sample(c('female','male'), n,TRUE)) label(age) <- 'Age' # label is in Hmisc label(cholesterol) <- 'Total Cholesterol' label(blood.pressure) <- 'Systolic Blood Pressure' label(sex) <- 'Sex' units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc units(blood.pressure) <- 'mmHg' ch <- cut2(cholesterol, g=40, levels.mean=TRUE) # use mean values in intervals table(ch) f <- lrm(ch ~ age) require(MASS) f1<-glmmPQL(ch~age, random=~1|sex, family=binomial) summary(f1)
对于是否可以将随机效应并入均方根以进行逻辑回归(lrm)或通过nlme进行线性回归,我会感兴趣。
谢谢大家