当前位置:  开发笔记 > 编程语言 > 正文

c#中的定点数学?

如何解决《c#中的定点数学?》经验,为你挑选了2个好方法。

我想知道这里是否有人知道c#中定点数学的任何好资源?我见过这样的事情(http://2ddev.72dpiarmy.com/viewtopic.php?id=156)和这个(定点数学的最佳方法是什么?),以及关于是否十进制的一些讨论实际上是固定点或实际浮点(更新:响应者已经确认它肯定是浮点数),但是我还没有看到一个可靠的C#库来计算余弦和正弦.

我的需求很简单 - 我需要基本的操作符,加上余弦,正弦,arctan2,PI ...我认为这就是它.也许sqrt.我正在编写一个2D RTS游戏,我已经在很大程度上工作了,但是使用浮点数学(双精度)时的单位运动在多台机器上随着时间的推移(10-30分钟)有很小的不准确性,从而导致了desyncs.目前这只是在32位操作系统和64位操作系统之间,所有32位机器似乎保持同步没有问题,这使我认为这是一个浮点问题.

我从一开始就意识到这是一个可能的问题,所以尽可能地限制了我对非整数位置数学的使用,但是为了在不同的速度下平滑对角线移动,我正在以弧度计算点之间的角度,然后用sin和cos得到运动的x和y分量.这是主要问题.我还对线段交叉点,线圆交叉点,圆矩交点等进行了一些计算,这些计算也可能需要从浮点移动到定点以避免跨机器问题.

如果在Java或VB或其他类似语言中有开源的话,我可能会将代码转换为我的用途.我的主要优先考虑的是准确性,尽管我希望尽可能减少速度损失而不是现在的性能.这整个定点数学对我来说是非常新的,我很惊讶谷歌上的实用信息很少 - 大多数东西似乎是理论或密集的C++头文件.

你可以做的任何事情都指向我正确的方向非常感谢; 如果我可以使这个工作,我计划开源我放在一起的数学函数,以便有其他C#程序员的资源.

更新:我绝对可以使余弦/正弦查找表适用于我的目的,但我认为这不适用于arctan2,因为我需要生成一个包含大约64,000x64,000个条目(yikes)的表.如果您知道有关计算arctan2等事物的有效方法的任何程序性解释,那将是非常棒的.我的数学背景还可以,但是高级公式和传统的数学符号对我来说很难翻译成代码.



1> x4000..:

好的,这是我为定点结构提出的,基于我原始问题中的链接,但也包括一些修复它如何处理除法和乘法,以及为模块,比较,移位等添加逻辑:

public struct FInt
{
    public long RawValue;
    public const int SHIFT_AMOUNT = 12; //12 is 4096

    public const long One = 1 << SHIFT_AMOUNT;
    public const int OneI = 1 << SHIFT_AMOUNT;
    public static FInt OneF = FInt.Create( 1, true );

    #region Constructors
    public static FInt Create( long StartingRawValue, bool UseMultiple )
    {
        FInt fInt;
        fInt.RawValue = StartingRawValue;
        if ( UseMultiple )
            fInt.RawValue = fInt.RawValue << SHIFT_AMOUNT;
        return fInt;
    }
    public static FInt Create( double DoubleValue )
    {
        FInt fInt;
        DoubleValue *= (double)One;
        fInt.RawValue = (int)Math.Round( DoubleValue );
        return fInt;
    }
    #endregion

    public int IntValue
    {
        get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
    }

    public int ToInt()
    {
        return (int)( this.RawValue >> SHIFT_AMOUNT );
    }

    public double ToDouble()
    {
        return (double)this.RawValue / (double)One;
    }

    public FInt Inverse
    {
        get { return FInt.Create( -this.RawValue, false ); }
    }

    #region FromParts
    /// 
    /// Create a fixed-int number from parts.  For example, to create 1.5 pass in 1 and 500.
    /// 
    /// The number above the decimal.  For 1.5, this would be 1.
    /// The number below the decimal, to three digits.  
    /// For 1.5, this would be 500. For 1.005, this would be 5.
    /// A fixed-int representation of the number parts
    public static FInt FromParts( int PreDecimal, int PostDecimal )
    {
        FInt f = FInt.Create( PreDecimal, true );
        if ( PostDecimal != 0 )
            f.RawValue += ( FInt.Create( PostDecimal ) / 1000 ).RawValue;

        return f;
    }
    #endregion

    #region *
    public static FInt operator *( FInt one, FInt other )
    {
        FInt fInt;
        fInt.RawValue = ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT;
        return fInt;
    }

    public static FInt operator *( FInt one, int multi )
    {
        return one * (FInt)multi;
    }

    public static FInt operator *( int multi, FInt one )
    {
        return one * (FInt)multi;
    }
    #endregion

    #region /
    public static FInt operator /( FInt one, FInt other )
    {
        FInt fInt;
        fInt.RawValue = ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue );
        return fInt;
    }

    public static FInt operator /( FInt one, int divisor )
    {
        return one / (FInt)divisor;
    }

    public static FInt operator /( int divisor, FInt one )
    {
        return (FInt)divisor / one;
    }
    #endregion

    #region %
    public static FInt operator %( FInt one, FInt other )
    {
        FInt fInt;
        fInt.RawValue = ( one.RawValue ) % ( other.RawValue );
        return fInt;
    }

    public static FInt operator %( FInt one, int divisor )
    {
        return one % (FInt)divisor;
    }

    public static FInt operator %( int divisor, FInt one )
    {
        return (FInt)divisor % one;
    }
    #endregion

    #region +
    public static FInt operator +( FInt one, FInt other )
    {
        FInt fInt;
        fInt.RawValue = one.RawValue + other.RawValue;
        return fInt;
    }

    public static FInt operator +( FInt one, int other )
    {
        return one + (FInt)other;
    }

    public static FInt operator +( int other, FInt one )
    {
        return one + (FInt)other;
    }
    #endregion

    #region -
    public static FInt operator -( FInt one, FInt other )
    {
        FInt fInt;
        fInt.RawValue = one.RawValue - other.RawValue;
        return fInt;
    }

    public static FInt operator -( FInt one, int other )
    {
        return one - (FInt)other;
    }

    public static FInt operator -( int other, FInt one )
    {
        return (FInt)other - one;
    }
    #endregion

    #region ==
    public static bool operator ==( FInt one, FInt other )
    {
        return one.RawValue == other.RawValue;
    }

    public static bool operator ==( FInt one, int other )
    {
        return one == (FInt)other;
    }

    public static bool operator ==( int other, FInt one )
    {
        return (FInt)other == one;
    }
    #endregion

    #region !=
    public static bool operator !=( FInt one, FInt other )
    {
        return one.RawValue != other.RawValue;
    }

    public static bool operator !=( FInt one, int other )
    {
        return one != (FInt)other;
    }

    public static bool operator !=( int other, FInt one )
    {
        return (FInt)other != one;
    }
    #endregion

    #region >=
    public static bool operator >=( FInt one, FInt other )
    {
        return one.RawValue >= other.RawValue;
    }

    public static bool operator >=( FInt one, int other )
    {
        return one >= (FInt)other;
    }

    public static bool operator >=( int other, FInt one )
    {
        return (FInt)other >= one;
    }
    #endregion

    #region <=
    public static bool operator <=( FInt one, FInt other )
    {
        return one.RawValue <= other.RawValue;
    }

    public static bool operator <=( FInt one, int other )
    {
        return one <= (FInt)other;
    }

    public static bool operator <=( int other, FInt one )
    {
        return (FInt)other <= one;
    }
    #endregion

    #region >
    public static bool operator >( FInt one, FInt other )
    {
        return one.RawValue > other.RawValue;
    }

    public static bool operator >( FInt one, int other )
    {
        return one > (FInt)other;
    }

    public static bool operator >( int other, FInt one )
    {
        return (FInt)other > one;
    }
    #endregion

    #region <
    public static bool operator <( FInt one, FInt other )
    {
        return one.RawValue < other.RawValue;
    }

    public static bool operator <( FInt one, int other )
    {
        return one < (FInt)other;
    }

    public static bool operator <( int other, FInt one )
    {
        return (FInt)other < one;
    }
    #endregion

    public static explicit operator int( FInt src )
    {
        return (int)( src.RawValue >> SHIFT_AMOUNT );
    }

    public static explicit operator FInt( int src )
    {
        return FInt.Create( src, true );
    }

    public static explicit operator FInt( long src )
    {
        return FInt.Create( src, true );
    }

    public static explicit operator FInt( ulong src )
    {
        return FInt.Create( (long)src, true );
    }

    public static FInt operator <<( FInt one, int Amount )
    {
        return FInt.Create( one.RawValue << Amount, false );
    }

    public static FInt operator >>( FInt one, int Amount )
    {
        return FInt.Create( one.RawValue >> Amount, false );
    }

    public override bool Equals( object obj )
    {
        if ( obj is FInt )
            return ( (FInt)obj ).RawValue == this.RawValue;
        else
            return false;
    }

    public override int GetHashCode()
    {
        return RawValue.GetHashCode();
    }

    public override string ToString()
    {
        return this.RawValue.ToString();
    }
}

public struct FPoint
{
    public FInt X;
    public FInt Y;

    public static FPoint Create( FInt X, FInt Y )
    {
        FPoint fp;
        fp.X = X;
        fp.Y = Y;
        return fp;
    }

    public static FPoint FromPoint( Point p )
    {
        FPoint f;
        f.X = (FInt)p.X;
        f.Y = (FInt)p.Y;
        return f;
    }

    public static Point ToPoint( FPoint f )
    {
        return new Point( f.X.IntValue, f.Y.IntValue );
    }

    #region Vector Operations
    public static FPoint VectorAdd( FPoint F1, FPoint F2 )
    {
        FPoint result;
        result.X = F1.X + F2.X;
        result.Y = F1.Y + F2.Y;
        return result;
    }

    public static FPoint VectorSubtract( FPoint F1, FPoint F2 )
    {
        FPoint result;
        result.X = F1.X - F2.X;
        result.Y = F1.Y - F2.Y;
        return result;
    }

    public static FPoint VectorDivide( FPoint F1, int Divisor )
    {
        FPoint result;
        result.X = F1.X / Divisor;
        result.Y = F1.Y / Divisor;
        return result;
    }
    #endregion
}

根据ShuggyCoUk的评论,我看到这是Q12格式.这对我的目的来说是相当精确的.当然,除了错误修正,我在问我的问题之前已经有了这个基本格式.我正在寻找的方法是使用这样的结构计算C#中的Sqrt,Atan2,Sin和Cos.在C#中我没有任何其他可以解决这个问题的事情,但是在Java中我设法找到了Onno Hommes 的MathFP库.这是一个自由的源软件许可证,所以我已经将他的一些功能转换为我在C#中的目的(我认为修复了atan2).请享用:

    #region PI, DoublePI
    public static FInt PI = FInt.Create( 12868, false ); //PI x 2^12
    public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
    public static FInt PIOver180F = PI / (FInt)180; //PI / 180
    #endregion

    #region Sqrt
    public static FInt Sqrt( FInt f, int NumberOfIterations )
    {
        if ( f.RawValue < 0 ) //NaN in Math.Sqrt
            throw new ArithmeticException( "Input Error" );
        if ( f.RawValue == 0 )
            return (FInt)0;
        FInt k = f + FInt.OneF >> 1;
        for ( int i = 0; i < NumberOfIterations; i++ )
            k = ( k + ( f / k ) ) >> 1;

        if ( k.RawValue < 0 )
            throw new ArithmeticException( "Overflow" );
        else
            return k;
    }

    public static FInt Sqrt( FInt f )
    {
        byte numberOfIterations = 8;
        if ( f.RawValue > 0x64000 )
            numberOfIterations = 12;
        if ( f.RawValue > 0x3e8000 )
            numberOfIterations = 16;
        return Sqrt( f, numberOfIterations );
    }
    #endregion

    #region Sin
    public static FInt Sin( FInt i )
    {
        FInt j = (FInt)0;
        for ( ; i < 0; i += FInt.Create( 25736, false ) ) ;
        if ( i > FInt.Create( 25736, false ) )
            i %= FInt.Create( 25736, false );
        FInt k = ( i * FInt.Create( 10, false ) ) / FInt.Create( 714, false );
        if ( i != 0 && i != FInt.Create( 6434, false ) && i != FInt.Create( 12868, false ) && 
            i != FInt.Create( 19302, false ) && i != FInt.Create( 25736, false ) )
            j = ( i * FInt.Create( 100, false ) ) / FInt.Create( 714, false ) - k * FInt.Create( 10, false );
        if ( k <= FInt.Create( 90, false ) )
            return sin_lookup( k, j );
        if ( k <= FInt.Create( 180, false ) )
            return sin_lookup( FInt.Create( 180, false ) - k, j );
        if ( k <= FInt.Create( 270, false ) )
            return sin_lookup( k - FInt.Create( 180, false ), j ).Inverse;
        else
            return sin_lookup( FInt.Create( 360, false ) - k, j ).Inverse;
    }

    private static FInt sin_lookup( FInt i, FInt j )
    {
        if ( j > 0 && j < FInt.Create( 10, false ) && i < FInt.Create( 90, false ) )
            return FInt.Create( SIN_TABLE[i.RawValue], false ) + 
                ( ( FInt.Create( SIN_TABLE[i.RawValue + 1], false ) - FInt.Create( SIN_TABLE[i.RawValue], false ) ) / 
                FInt.Create( 10, false ) ) * j;
        else
            return FInt.Create( SIN_TABLE[i.RawValue], false );
    }

    private static int[] SIN_TABLE = {
        0, 71, 142, 214, 285, 357, 428, 499, 570, 641, 
        711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333, 
        1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985, 
        2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577, 
        2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091, 
        3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510, 
        3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823, 
        3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020, 
        4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095, 
        4096
    };
    #endregion

    private static FInt mul( FInt F1, FInt F2 )
    {
        return F1 * F2;
    }

    #region Cos, Tan, Asin
    public static FInt Cos( FInt i )
    {
        return Sin( i + FInt.Create( 6435, false ) );
    }

    public static FInt Tan( FInt i )
    {
        return Sin( i ) / Cos( i );
    }

    public static FInt Asin( FInt F )
    {
        bool isNegative = F < 0;
        F = Abs( F );

        if ( F > FInt.OneF )
            throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );

        FInt f1 = mul( mul( mul( mul( FInt.Create( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
            FInt.Create( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
            FInt.Create( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
            FInt.Create( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
            FInt.Create( 26353447 >> FInt.SHIFT_AMOUNT, false );
        FInt f2 = PI / FInt.Create( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );

        return isNegative ? f2.Inverse : f2;
    }
    #endregion

    #region ATan, ATan2
    public static FInt Atan( FInt F )
    {
        return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
    }

    public static FInt Atan2( FInt F1, FInt F2 )
    {
        if ( F2.RawValue == 0 && F1.RawValue == 0 )
            return (FInt)0;

        FInt result = (FInt)0;
        if ( F2 > 0 )
            result = Atan( F1 / F2 );
        else if ( F2 < 0 )
        {
            if ( F1 >= 0 )
                result = ( PI - Atan( Abs( F1 / F2 ) ) );
            else
                result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
        }
        else
            result = ( F1 >= 0 ? PI : PI.Inverse ) / FInt.Create( 2, true );

        return result;
    }
    #endregion

    #region Abs
    public static FInt Abs( FInt F )
    {
        if ( F < 0 )
            return F.Inverse;
        else
            return F;
    }
    #endregion

Hommes博士的MathFP库中还有许多其他功能,但它们超出了我的需要,因此我没有花时间将它们翻译成C#(由于他正在使用这个过程,这个过程变得非常困难很长,我正在使用FInt结构,这使得转换规则有点难以立即看到).

这些函数在这里被编码的准确性对我来说已经足够了,但是如果你需要更多,你可以增加FInt上的SHIFT AMOUNT.请注意,如果你这样做,那么Hommes博士的功能上的常数将需要除以4096,然后再乘以你的新SHIFT AMOUNT所需的数量.如果你这样做并且不小心,你可能会遇到一些错误,所以一定要对内置的Math函数进行检查,以确保不会通过错误地调整常量来推迟结果.

到目前为止,这个FInt逻辑似乎与内置的.net函数一样快,如果不是更快一点.这显然会因机器而异,因为fp协处理器会确定这一点,因此我没有运行特定的基准测试.但它们现在已集成到我的游戏中,而且我看到处理器利用率与之前相比略有下降(这是在Q6600四核上 - 平均使用率下降约1%).

再次感谢所有评论过您的帮助的人.没有人直接指出我正在寻找的东西,但你给了我一些线索,帮助我自己在谷歌上找到它.我希望这个代码对其他人有用,因为C#似乎没有公开发布的可比性.



2> Tometzky..:

使用64位整数,例如1/1000比例.您可以正常添加和减去.当你需要乘以然后乘以整数然后除以1000.当你需要sqrt,sin,cos等然后转换为long double,除以1000,sqrt,乘以1000,转换为整数.机器之间的差异应该不重要.

您可以使用其他比例来实现更快的分割,例如1024 x/1024 == x >> 10.


这就是我所担心的,是转向浮点还是后退.我想用64位整数格式本身进行sin,cos等计算.否则我喜欢这个解决方案,但是如果没有它,我担心准确性不会是我需要的.
推荐阅读
手机用户2402851155
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有