当前位置:  开发笔记 > 编程语言 > 正文

tensorflow.equal()上的形状不相容,用于正确的预测评估

如何解决《tensorflow.equal()上的形状不相容,用于正确的预测评估》经验,为你挑选了1个好方法。

使用Tensorflow的MNIST教程,我尝试使用"面部数据库"创建一个用于人脸识别的卷积网络.

图像大小为112x92,我使用3个卷积层将其减少到6 x 5,如此处所示

我在卷积网络上非常新,我的大部分层声明是通过类比Tensorflow MNIST教程制作的,它可能有点笨拙,所以请随时向我提出建议.

x_image = tf.reshape(x, [-1, 112, 92, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_conv3 = weight_variable([5, 5, 64, 128])
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool_2x2(h_conv3)

W_conv4 = weight_variable([5, 5, 128, 256])
b_conv4 = bias_variable([256])
h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4)
h_pool4 = max_pool_2x2(h_conv4)

W_conv5 = weight_variable([5, 5, 256, 512])
b_conv5 = bias_variable([512])
h_conv5 = tf.nn.relu(conv2d(h_pool4, W_conv5) + b_conv5)
h_pool5 = max_pool_2x2(h_conv5)

W_fc1 = weight_variable([6 * 5 * 512, 1024])
b_fc1 = bias_variable([1024])
h_pool5_flat = tf.reshape(h_pool5, [-1, 6 * 5 * 512])
h_fc1 = tf.nn.relu(tf.matmul(h_pool5_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

print orlfaces.train.num_classes # 40
W_fc2 = weight_variable([1024, orlfaces.train.num_classes])
b_fc2 = bias_variable([orlfaces.train.num_classes])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

当会话运行"correct_prediction"操作时,我的问题出现了

tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))

至少我认为给出错误信息:

W tensorflow/core/common_runtime/executor.cc:1027] 0x19369d0 Compute status: Invalid argument: Incompatible shapes: [8] vs. [20]
     [[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
Traceback (most recent call last):
  File "./convolutional.py", line 133, in 
    train_accuracy = accuracy.eval(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 1.0})
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 405, in eval
    return _eval_using_default_session(self, feed_dict, self.graph, session)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2728, in _eval_using_default_session
    return session.run(tensors, feed_dict)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 345, in run
    results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 419, in _do_run
    e.code)
tensorflow.python.framework.errors.InvalidArgumentError: Incompatible shapes: [8] vs. [20]
     [[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
Caused by op u'Equal', defined at:
  File "./convolutional.py", line 125, in 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 328, in equal
    return _op_def_lib.apply_op("Equal", x=x, y=y, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 633, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1710, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 988, in __init__
    self._traceback = _extract_stack()

看起来y_conv输出一个形状为8 x batch_size的矩阵,而不是number_of_class x batch_size

如果我将批量大小从20更改为10,则错误消息保持不变,而是[8]与[20]相比,我得到[4]与[10].因此我得出结论,问题可能来自y_conv声明(上面代码的最后一行).

损失函数,优化器,训练等声明与MNIST教程中的相同:

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run((tf.initialize_all_variables()))
for i in xrange(1000):
    batch = orlfaces.train.next_batch(20)
    if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 1.0})
        print "Step %d, training accuracy %g" % (i, train_accuracy)
    train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})

print "Test accuracy %g" % accuracy.eval(feed_dict = {x: orlfaces.test.images, y_: orlfaces.test.labels, keep_prob: 1.0})

感谢您的阅读,祝您有个美好的一天



1> shorty_ponto..:

好吧,经过大量调试后,我发现我的问题是由于标签的实例化不好造成的.我没有创建充满零的数组并将一个值替换为一个,而是使用随机值创建它们!愚蠢的错误.如果有人想知道我做错了那里,我怎么解决它在这里是我所做的更改.

无论如何,在我做的所有调试中,为了发现这个错误,我发现了一些有用的信息来调试这类问题:

    对于交叉熵声明,tensorflow的MNIST教程使用可导致NaN值的公式

这个公式是

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

取而代之的是,我发现了两种以更安全的方式声明它的方法:

cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y_conv, 1e-10, 1.0)))

或者:

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logit, y_))

    正如迈里所说.打印张量的形状有助于检测形状异常.

要获得张量的形状,只需调用他的get_shape()方法,如下所示:

print "W shape:", W.get_shape()

    此问题中的user1111929 使用调试打印,帮助我断言问题的来源.

推荐阅读
拾味湖
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有