当前位置:  开发笔记 > 编程语言 > 正文

keras 指定程序在某块卡上训练实例

这篇文章主要介绍了keras指定程序在某块卡上训练实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

场景:某台机器上有三块卡,想同时开三个程序,放到三块卡上去训练。

策略:CUDA_VISIBLE_DEVICES=1 python train.py就可以指定程序在某块卡上训练。

补充知识:keras指定GPU及显存使用量

指定GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

指定GPU和显存使用量

import os
from keras.backend.tensorflow_backend import set_session

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))

指定GPU显存使用按需分配

import keras.backend.tensorflow_backend as KTF
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
config = tf.ConfigProto()
config.gpu_options.allow_growth=True 
sess = tf.Session(config=config)
KTF.set_session(sess)

以上这篇keras 指定程序在某块卡上训练实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

推荐阅读
周扒pi
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有