当前位置:  开发笔记 > 人工智能 > 正文

基于pytorch的保存和加载模型参数的方法

今天小编就为大家分享一篇基于pytorch的保存和加载模型参数的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了。

保存和加载模型参数有两种方式:

方式一:

torch.save(net.state_dict(),path):

功能:保存训练完的网络的各层参数(即weights和bias)

其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth)

net2.load_state_dict(torch.load(path)):

功能:加载保存到path中的各层参数到神经网络

注意:不可以直接为torch.load_state_dict(path),此函数不能直接接收字符串类型参数

方式二:

torch.save(net,path):

功能:保存训练完的整个网络模型(不止weights和bias)

net2=torch.load(path):

功能:加载保存到path中的整个神经网络

说明:官方推荐方式一,原因自然是保存的内容少,速度会更快。

以上这篇基于pytorch的保存和加载模型参数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

推荐阅读
Chloemw
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有