我在MATLAB中玩图像处理算法.其中一个基本的是用高斯卷积图像.我在灰度800x600图像上运行了以下测试:
function [Y1, Y2] = testConvolveTime(inputImage) [m,n] = size(inputImage); % casting... inputImage = cast(inputImage, 'single'); Gvec = [1 4 6 4 1]; % sigma=1; Y1 = zeros(size(inputImage)); % modify it Y2 = zeros(size(inputImage)); % modify it %%%%%%%%%%%%%%%%%%% MATLAB CONV %%%%%%%%%%%%%%%%%%%%% t1 = cputime; for i=1:m Y1(i,:) = conv(inputImage(i,:),Gvec,'same'); end for j=1:n Y1(:,j) = conv(inputImage(:,j),Gvec','same'); end Y1 = round(Y1 / 16); e1 = cputime - t1 %%%%%%%%%%%%%%%%%%% HAND-CODED CONV %%%%%%%%%%%%%%%%%%%%% t2 = cputime; for i=1:m Y2(i,:) = myConv(inputImage(i,:),Gvec)'; end for j=1:n Y2(:,j) = myConv(inputImage(:,j),Gvec'); end Y2 = round(Y2 / 16); e2 = cputime - t2 end
这是我编写的实现2个向量的卷积的代码:
% mimic MATLAB's conv(u,v,'same') function % always returns column vec function y = myConv(u_in, v_in) len1 = length(u_in); len2 = length(v_in); if (len1 >= len2) u = u_in; v = v_in; else u = v_in; v = u_in; end % from here on: v is the shorter vector (len1 >= len2) len1 = length(u); len2 = length(v); maxLen = len1 + len2 - 1; ytemp = zeros(maxLen,1); % first part -- partial overlap for i=1:len2-1 sum = 0; for j=1:i sum = sum + u(i-j+1)*v(j); end ytemp(i) = sum; end % main part -- complete overlap for i=len2:len1 sum = 0; for j=1:len2 sum = sum + u(i-j+1)*v(j); end ytemp(i) = sum; end % finally -- end portion for i=len1+1:maxLen %i-len1+1 sum = 0; for j=i-len1+1:len2 sum = sum + u(i-j+1)*v(j); end ytemp(i) = sum; end %y = ytemp; startIndex = round((maxLen - length(u_in))/2 + 1); y = ytemp(startIndex:startIndex+length(u_in)-1); % ^ note: to match MATLAB's conv(u,v,'same'), the output length must be % that of the first argument. end
这是我的测试结果:
>> [Y1, Y2] = testConvolveTime(A1); e1 = 0.5313 e2 = 195.8906 >> norm(Y1 - Y2) ans = 0
标准为0验证数学正确性.我的问题如下:
1)我的手工编码功能如何比使用MATLAB转换器的功能慢360倍?
2)即使MATLAB的转换对于图像处理仍然"慢".如果使用高斯进行卷积需要0.5秒,那么实时运行任何图像处理算法(例如24 FPS)有什么希望?作为参考,我的CPU是Intel N3540 @ 2.16 GHz.w/8GB的RAM.
3)^真正的问题:当我在C++上切换到OpenCV时,这样的操作会变得更快吗?
感谢您的任何见解,非常感谢.
1)conv
速度快得多,因为它是一个内置的本机函数,而你的函数是用嵌套循环解释MATLAB代码的.
2)尝试imfilter
图像处理工具箱.它可能比它更快conv
,并且它适用于uint8
数组.或者,如果您获得更新版本的MATLAB,并且只需要高斯滤波器,请尝试imgaussfilt
.