当前位置:  开发笔记 > 人工智能 > 正文

NVidia驱动程序停止使用Ubuntu 16.04和Tesla K80 GPU在AWS EC2实例上工作

如何解决《NVidia驱动程序停止使用Ubuntu16.04和TeslaK80GPU在AWSEC2实例上工作》经验,为你挑选了1个好方法。

我一直在使用带有Tesla K80 GPU的AWS EC2实例来运行TensorFlow代码。我已经安装了CUDA 9.0和cuDNN 7.1.4,我使用的是TF 1.12,所有这些都在Ubuntu 16.04上

到昨天为止一切正常,但今天看来NVidia驱动程序由于某种原因已停止运行:

ubuntu@ip-10-0-0-13:~$ nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.

我检查了驱动程序:

ubuntu@ip-10-0-0-13:~$ dpkg -l | grep nvidia
rc  nvidia-367                              367.48-0ubuntu1                            amd64        NVIDIA binary driver - version 367.48
ii  nvidia-396                              396.37-0ubuntu1                            amd64        NVIDIA binary driver - version 396.37
ii  nvidia-396-dev                          396.37-0ubuntu1                            amd64        NVIDIA binary Xorg driver development files
ii  nvidia-machine-learning-repo-ubuntu1604 1.0.0-1                                    amd64        nvidia-machine-learning repository configuration files
ii  nvidia-modprobe                         396.37-0ubuntu1                            amd64        Load the NVIDIA kernel driver and create device files
rc  nvidia-opencl-icd-367                   367.48-0ubuntu1                            amd64        NVIDIA OpenCL ICD
ii  nvidia-opencl-icd-396                   396.37-0ubuntu1                            amd64        NVIDIA OpenCL ICD
ii  nvidia-prime                            0.8.2                                      amd64        Tools to enable NVIDIA's Prime
ii  nvidia-settings                         396.37-0ubuntu1                            amd64        Tool for configuring the NVIDIA graphics driver

看来目前有2个不同的版本,这可能是个问题吗?(但是我无法理解为什么一切都可以正常工作)。

找到这个线程后,我检查了我的内核,该内核显然与该线程中提到的内核不同:

ubuntu@ip-10-0-0-13:~$ uname -a
Linux ip-10-0-0-13 4.4.0-143-generic #169-Ubuntu SMP Thu Feb 7 07:56:38 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

有没有人遇到这个问题,知道如何解决?在此先感谢您的帮助 !

编辑:

尝试使用@Dehydrated_Mud的方法升级驱动程序时,出现以下错误:

ERROR: The installation was canceled due to the availability or presence of an alternate driver installation. Please see /var/log/nvidia-installer.log for more details.

以及日志文件的内容:

nvidia-installer log file '/var/log/nvidia-installer.log'
creation time: Thu Mar 21 10:56:46 2019
installer version: 384.183

PATH: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin

nvidia-installer command line:
    ./nvidia-installer
    --no-drm
    --disable-nouveau
    --dkms
    --silent
    --install-libglvnd

Using built-in stream user interface
-> Detected 4 CPUs online; setting concurrency level to 4.
-> Installing NVIDIA driver version 384.183.
-> The NVIDIA driver appears to have been installed previously using a different installer. To prevent potential conflicts, it is recommended either to update the existing installation using the same mechanism by which it was originally installed, or to uninstall the existing installation before installing this driver.

Please review the message provided by the maintainer of this alternate installation method and decide how to proceed:

The package that is already installed is named nvidia-396.

You can upgrade the driver by running:
`apt-get install nvidia-396 nvidia-modprobe nvidia-settings`

You can remove nvidia-396, and all related packages, by running:
`apt-get remove --purge nvidia-396 nvidia-modprobe nvidia-settings`

This package is maintained by NVIDIA (cudatools@nvidia.com).


(Answer: Abort installation)
ERROR: The installation was canceled due to the availability or presence of an alternate driver installation. Please see /var/log/nvidia-installer.log for more details.

运行apt-cache search nvidia | grep -P '^nvidia-[0-9]+\s'给出:

nvidia-331 - Transitional package for nvidia-331
nvidia-346 - Transitional package for nvidia-346
nvidia-304 - NVIDIA legacy binary driver - version 304.135
nvidia-340 - NVIDIA binary driver - version 340.107
nvidia-361 - Transitional package for nvidia-367
nvidia-352 - Transitional package for nvidia-375
nvidia-367 - Transitional package for nvidia-387
nvidia-375 - Transitional package for nvidia-418
nvidia-387 - NVIDIA binary driver - version 387.26
nvidia-418 - NVIDIA binary driver - version 418.39
nvidia-384 - NVIDIA binary driver - version 384.183
nvidia-390 - NVIDIA binary driver - version 390.116
nvidia-410 - NVIDIA binary driver - version 410.104
nvidia-396 - NVIDIA binary driver - version 396.82

Dehydrated_M.. 9

我通过更新到最新的Nvidia驱动程序来解决此问题。使用:

nvcc --version

获取cuda工具包的版本号。对于9.0,最新驱动程序是384.183,而CUDA 10.0是410.104。

然后运行:

 wget http://us.download.nvidia.com/tesla/384.183/NVIDIA-Linux-x86_64-384.183.run

下载驱动程序。

然后运行:

sudo sh ./NVIDIA-Linux-x86_64-384.183.run --no-drm --disable-nouveau --dkms --silent --install-libglvnd

安装驱动程序。

跑:

nvidia-smi

检查问题是否已解决。



1> Dehydrated_M..:

我通过更新到最新的Nvidia驱动程序来解决此问题。使用:

nvcc --version

获取cuda工具包的版本号。对于9.0,最新驱动程序是384.183,而CUDA 10.0是410.104。

然后运行:

 wget http://us.download.nvidia.com/tesla/384.183/NVIDIA-Linux-x86_64-384.183.run

下载驱动程序。

然后运行:

sudo sh ./NVIDIA-Linux-x86_64-384.183.run --no-drm --disable-nouveau --dkms --silent --install-libglvnd

安装驱动程序。

跑:

nvidia-smi

检查问题是否已解决。

推荐阅读
帆侮听我悄悄说星星
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有