当前位置:  开发笔记 > 编程语言 > 正文

R geepack:使用GEE进行不合理的大规模估算

如何解决《Rgeepack:使用GEE进行不合理的大规模估算》经验,为你挑选了1个好方法。

我用geepackR来估算逻辑边际模型geeglm().但我得到垃圾估计.它们大约16个数量级太大.然而,p值似乎与我的预期相似.这意味着响应基本上成为阶梯函数.见附图适合边际模型

以下是生成图表的代码:

require(geepack)
data = read.csv(url("http://folk.uio.no/mariujon/data.csv"))
fit = geeglm(moden ~ 1 + power, id = defacto, data=data, corstr = "exchangeable", family=binomial)
summary(fit)
plot(moden ~ power, data=data)
x = 0:2500
y = predict(fit, newdata=data.frame(power = x), type="response" )
lines(x,y)

这是回归表:

Call:
geeglm(formula = moden ~ 1 + power, family = binomial, data = data, 
    id = defacto, corstr = "exchangeable")

 Coefficients:
             Estimate   Std.err  Wald Pr(>|W|)    
(Intercept) -7.38e+15  1.47e+15  25.1  5.4e-07 ***
power        2.05e+13  1.60e+12 164.4  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated Scale Parameters:
            Estimate  Std.err
(Intercept) 1.03e+15 1.65e+37

Correlation: Structure = exchangeable  Link = identity 

Estimated Correlation Parameters:
      Estimate  Std.err
alpha    0.196 3.15e+21
Number of clusters:   3   Maximum cluster size: 381

希望得到一些帮助.谢谢!

亲切的问候,

马吕斯



1> swihart..:

我将给出三个程序,每个程序都是边缘化的随机拦截模型(MRIM).这些MRIM具有边际逻辑解释的系数,其幅度小于GEE:

| Model | (Intercept) |  power |  LogL  |
|-------|-------------|--------|--------| 
| `L_N` |       -1.050| 0.00267|  -270.1|
| `LLB` |       -0.668| 0.00343|  -273.8|
| `LPN` |       -1.178| 0.00569|  -266.4|

与不考虑任何相关性的glm相比,供参考:

| Model | (Intercept) |  power |  LogL  |
|-------|-------------|--------|--------| 
|  strt |       -0.207| 0.00216|  -317.1|

边缘化随机拦截模型(MRIM)值得探索,因为您需要具有可交换相关结构的边缘模型用于聚类数据,这是MRIM所展示的结构类型.

代码(特别是带有注释的R脚本)和文献的PDF都在GITHUB回购中.我详细介绍了下面的代码和文献.

MRIM的概念自1999年以来一直存在,关于此的一些背景阅读是在GITHUB回购中.我建议先阅读Swihart et al 2014,因为它会回顾其他论文.

按年代顺序 -

L_N Heagerty(1999):该方法适用于具有正态分布随机截距的随机拦截逻辑模型.诀窍在于随机截距模型中的预测器使用边际系数进行非线性参数化,以便得到的边际模型具有边际逻辑解释.它的代码是lnMLE[R包(不是在CRAN,但帕特里克Heagerty的网站在这里).L_N在代码中表示该方法以指示边际上的logit(L),对条件尺度(_)和正常(N)分布式随机截距没有解释.

LLB Wang&Louis(2003):该方法适用于具有分布随机截距的随机拦截逻辑模型.与Heagerty 1999不同,其技巧是随机拦截模型的非线性预测器,技巧是特殊的随机效应分布(桥分布),允许随机截距模型和结果边际模型具有逻辑解释.它的代码用gnlmix4MMM.R(在repo中)使用rmutilrepeatedR包实现.LLB在代码中表示该方法以指示边际上的logit(L),条件尺度上的logit(L)和桥(B)分布式截距.

LPN Caffo和Griswold(2006):该方法适用于具有正态分布随机截距的随机截距概率模型,而Heagerty 1999使用logit随机截距模型.这种替换使得计算更容易,并且仍然产生边际logit模型.它的代码用gnlmix4MMM.R(在repo中)使用rmutilrepeatedR包实现.该方法LPN在代码中表示,以指示条件标度上的边际,概率(P)上的logit(L)和正常(N)分布的截距.

Griswold等(2013):另一篇评论/实践介绍.

Swihart等2014:这是Heagerty 1999和Wang&Louis 2003以及其他人的综述文章,并概括了MRIM方法.最有趣的概括之一是允许边际和条件模型中的逻辑CDF(等效地,logit链接)代替近似于逻辑CDF的稳定分布.它的代码用gnlmix4MMM.R(在repo中)使用rmutilrepeatedR包实现.我SSS在R脚本中用注释表示这一点,用于表示边际上的稳定(S),条件尺度上的稳定(S)和稳定(S)分布式截距.它包含在R脚本中,但在SO上的这篇文章中没有详细说明.

预备

#code from OP Question: edit `data` to `d` 
require(geepack)
d = read.csv(url("http://folk.uio.no/mariujon/data.csv"))
fit = geeglm(moden ~ 1 + power, id = defacto, data=d, corstr = "exchangeable", family=binomial)
summary(fit)
plot(moden ~ power, data=d)
x = 0:2500
y = predict(fit, newdata=data.frame(power = x), type="response" )
lines(x,y)
#get some starting values from glm():
strt <- coef(glm(moden ~  power, family = binomial, data=d))
strt
#I'm so sorry but these methods use attach()
attach(d)

L_N Heagerty(1999)

# marginally specifies a logit link and has a nonlinear conditional model
# the following code will not run if lnMLE is not successfully installed.  
# See https://faculty.washington.edu/heagerty/Software/LDA/MLV/
library(lnMLE)
L_N <- logit.normal.mle(meanmodel = moden ~ power,
                        logSigma= ~1,
                        id=defacto,
                        model="marginal",
                        data=d,
                        beta=strt,
                        r=10) 
print.logit.normal.mle(L_N)

准备LLBLPN

library("gnlm")
library("repeated")
source("gnlmix4MMM.R") ## see ?gnlmix; in GITHUB repo 
y <- cbind(d$moden,(1-d$moden))

LLB 王和路易斯(2003)

LLB  <- gnlmix4MMM(y = y,
                   distribution = "binomial",
                   mixture = "normal",
                   random = "rand",
                   nest = defacto,
                   mu = ~ 1/(1+exp(-(a0 + a1*power)*sqrt(1+3/pi/pi*exp(pmix)) - sqrt(1+3/pi/pi*exp(pmix))*log(sin(pi*pnorm(rand/sqrt(exp(pmix)))/sqrt(1+3/pi/pi*exp(pmix)))/sin(pi*(1-pnorm(rand/sqrt(exp(pmix))))/sqrt(1+3/pi/pi*exp(pmix)))))),
                   pmu = c(strt, log(1)),
                   pmix = log(1))

print("code: 1 -best 2-ok 3,4,5 - problem")
LLB$code
print("coefficients")
LLB$coeff
print("se")
LLB$se

LPN Caffo和Griswold(2006)

LPN  <- gnlmix4MMM(y = y,
                   distribution = "binomial",
                   mixture = "normal",
                   random = "rand",
                   nest = defacto,
                   mu = ~pnorm(qnorm(1/(1+exp(-a0 - a1*power)))*sqrt(1+exp(pmix)) + rand),
                   pmu = c(strt, log(1)),
                   pmix = log(1))

print("code: 1 -best 2-ok 3,4,5 - problem")
LPN$code
print("coefficients")
LPN$coeff
print("se")
LPN$se

3种方法的系数:

rbind("L_N"=L_N$beta, "LLB" = LLB$coefficients[1:2], "LPN"=LPN$coefficients[1:2])

3种型号的最大对数可能性:

rbind("L_N"=L_N$logL, "LLB" = -LLB$maxlike, "LPN"=-LPN$maxlike)

推荐阅读
linjiabin43
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有