当前位置:  开发笔记 > 编程语言 > 正文

时间序列分析 - 不均匀间隔的测量 - 熊猫+ statsmodels

如何解决《时间序列分析-不均匀间隔的测量-熊猫+statsmodels》经验,为你挑选了1个好方法。

我有两个numpy数组light_points和time_points,并希望对这些数据使用一些时间序列分析方法.

然后我尝试了这个:

import statsmodels.api as sm
import pandas as pd
tdf = pd.DataFrame({'time':time_points[:]})
rdf =  pd.DataFrame({'light':light_points[:]})
rdf.index = pd.DatetimeIndex(freq='w',start=0,periods=len(rdf.light))
#rdf.index = pd.DatetimeIndex(tdf['time'])

这有效,但没有做正确的事情.实际上,测量不是均匀的时间间隔,如果我只是将time_points pandas DataFrame声明为我的帧的索引,我会收到一个错误:

rdf.index = pd.DatetimeIndex(tdf['time'])

decomp = sm.tsa.seasonal_decompose(rdf)

elif freq is None:
raise ValueError("You must specify a freq or x must be a pandas object with a timeseries index")

ValueError: You must specify a freq or x must be a pandas object with a timeseries index

我不知道如何纠正这个问题.此外,似乎大熊猫TimeSeries已被弃用.

我试过这个:

rdf = pd.Series({'light':light_points[:]})
rdf.index = pd.DatetimeIndex(tdf['time'])

但它给我一个长度不匹配:

ValueError: Length mismatch: Expected axis has 1 elements, new values have 122 elements

然而,我不明白它的来源,因为rdf ['light']和tdf ['time']长度相同......

最后,我尝试将我的rdf定义为熊猫系列:

rdf = pd.Series(light_points[:],index=pd.DatetimeIndex(time_points[:]))

我得到了这个:

ValueError: You must specify a freq or x must be a pandas object with a timeseries index

然后,我试着替换索引

 pd.TimeSeries(time_points[:])

它给了我在seasonal_decompose方法行上的错误:

AttributeError: 'Float64Index' object has no attribute 'inferred_freq'

如何处理不均匀间隔的数据?我正在考虑通过在现有值之间添加许多未知值并使用插值来"评估"这些点来创建大致均匀间隔的时间数组,但我认为可以有更简洁的解决方案.



1> Stefan..:

seasonal_decompose()要求a freq作为DateTimeIndex元信息的一部分提供,可以pandas.Index.inferred_freq由用户推断,或者由用户推断为integer给出每个周期的周期数.例如,12每月(来自docstringseasonal_mean):

def seasonal_decompose(x, model="additive", filt=None, freq=None):
    """
    Parameters
    ----------
    x : array-like
        Time series
    model : str {"additive", "multiplicative"}
        Type of seasonal component. Abbreviations are accepted.
    filt : array-like
        The filter coefficients for filtering out the seasonal component.
        The default is a symmetric moving average.
    freq : int, optional
        Frequency of the series. Must be used if x is not a pandas
        object with a timeseries index.

为了说明 - 使用随机样本数据:

length = 400
x = np.sin(np.arange(length)) * 10 + np.random.randn(length)
df = pd.DataFrame(data=x, index=pd.date_range(start=datetime(2015, 1, 1), periods=length, freq='w'), columns=['value'])


DatetimeIndex: 400 entries, 2015-01-04 to 2022-08-28
Freq: W-SUN

decomp = sm.tsa.seasonal_decompose(df)
data = pd.concat([df, decomp.trend, decomp.seasonal, decomp.resid], axis=1)
data.columns = ['series', 'trend', 'seasonal', 'resid']

Data columns (total 4 columns):
series      400 non-null float64
trend       348 non-null float64
seasonal    400 non-null float64
resid       348 non-null float64
dtypes: float64(4)
memory usage: 15.6 KB

到目前为止,这么好 - 现在随机丢弃元素DateTimeIndex来创建不均匀的空间数据:

df = df.iloc[np.unique(np.random.randint(low=0, high=length, size=length * .8))]


DatetimeIndex: 222 entries, 2015-01-11 to 2022-08-21
Data columns (total 1 columns):
value    222 non-null float64
dtypes: float64(1)
memory usage: 3.5 KB

df.index.freq

None

df.index.inferred_freq

None

运行seasonal_decomp此数据"工作":

decomp = sm.tsa.seasonal_decompose(df, freq=52)

data = pd.concat([df, decomp.trend, decomp.seasonal, decomp.resid], axis=1)
data.columns = ['series', 'trend', 'seasonal', 'resid']

DatetimeIndex: 224 entries, 2015-01-04 to 2022-08-07
Data columns (total 4 columns):
series      224 non-null float64
trend       172 non-null float64
seasonal    224 non-null float64
resid       172 non-null float64
dtypes: float64(4)
memory usage: 8.8 KB

问题是 - 结果有多大用处.即使数据中没有间隙使季节性模式的推断变得复杂(参见发布说明.interpolate()中的示例使用,也可按如下方式对此过程进行限定:statsmodels

Notes
-----
This is a naive decomposition. More sophisticated methods should
be preferred.

The additive model is Y[t] = T[t] + S[t] + e[t]

The multiplicative model is Y[t] = T[t] * S[t] * e[t]

The seasonal component is first removed by applying a convolution
filter to the data. The average of this smoothed series for each
period is the returned seasonal component.

推荐阅读
135369一生真爱_890
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有