我有分类问题,我想测试所有可用的算法来测试它们在解决问题时的表现.如果您知道除下面列出的分类算法以外的任何分类算法,请在此处列出.
GradientBoostingClassifier() DecisionTreeClassifier() RandomForestClassifier() LinearDiscriminantAnalysis() LogisticRegression() KNeighborsClassifier() GaussianNB() ExtraTreesClassifier() BaggingClassifier()
非常感谢您的帮助.
The answers did not provided the full list of classifiers so i have listed them below
from sklearn.tree import ExtraTreeClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.svm.classes import OneClassSVM from sklearn.neural_network.multilayer_perceptron import MLPClassifier from sklearn.neighbors.classification import RadiusNeighborsClassifier from sklearn.neighbors.classification import KNeighborsClassifier from sklearn.multioutput import ClassifierChain from sklearn.multioutput import MultiOutputClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.passive_aggressive import PassiveAggressiveClassifier from sklearn.gaussian_process.gpc import GaussianProcessClassifier from sklearn.ensemble.voting_classifier import VotingClassifier from sklearn.ensemble.weight_boosting import AdaBoostClassifier from sklearn.ensemble.gradient_boosting import GradientBoostingClassifier from sklearn.ensemble.bagging import BaggingClassifier from sklearn.ensemble.forest import ExtraTreesClassifier from sklearn.ensemble.forest import RandomForestClassifier from sklearn.naive_bayes import BernoulliNB from sklearn.calibration import CalibratedClassifierCV from sklearn.naive_bayes import GaussianNB from sklearn.semi_supervised import LabelPropagation from sklearn.semi_supervised import LabelSpreading from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegressionCV from sklearn.naive_bayes import MultinomialNB from sklearn.neighbors import NearestCentroid from sklearn.svm import NuSVC from sklearn.linear_model import Perceptron from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.svm import SVC from sklearn.mixture import DPGMM from sklearn.mixture import GMM from sklearn.mixture import GaussianMixture from sklearn.mixture import VBGMM
您可能想看看以下问题:
如何列出支持predict_proba()的所有scikit-learn分类器
接受的答案显示了获取scikit中支持predict_probas方法的所有估算器的方法.只需迭代并打印所有名称而不检查条件,即可获得所有估算器.(分类器,回归器,集群等)
仅对于分类器,请按如下所示进行修改,以检查实现ClassifierMixin的所有类
from sklearn.base import ClassifierMixin from sklearn.utils.testing import all_estimators classifiers=[est for est in all_estimators() if issubclass(est[1], ClassifierMixin)] print(classifiers)
注意事项:
CV后缀为其名称的分类器实现了内置的交叉验证(如LogisticRegressionCV,RidgeClassifierCV等).
有些是整体,可能会在输入参数中使用其他分类器.
某些分类器(如_QDA,_LDA)是其他分类器的别名,可能会在下一版本的scikit-learn中删除.
在使用它们之前,您应该检查它们各自的参考文档