我通过获取想法阅读一批图像这里从tfrecords(通过转换此)
我的图像是cifar图像,[32,32,3],你可以看到,在阅读和传递图像时,形状是正常的(batch_size=100
)
据我所知,日志中陈述的两个最值得注意的问题是
形状12228,我不知道从哪里得到这个.我的所有张量都是形状[32,32,3]或[无,3072]
用完了样品
Compute status: Out of range: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0)
我怎么解决这个问题?
日志:
1- image shape is TensorShape([Dimension(3072)]) 1.1- images batch shape is TensorShape([Dimension(100), Dimension(3072)]) 2- images shape is TensorShape([Dimension(100), Dimension(3072)]) W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72abc89a0 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] [[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]] W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72ab9d080 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] [[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]] W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa7285e55a0 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] [[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]] W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72aadb080 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288] [[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]] W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72ad499a0 Compute status: Out of range: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0) [[Node: input/shuffle_batch = QueueDequeueMany[component_types=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/shuffle_batch/n)]] Traceback (most recent call last): File "/Users/HANEL/Documents/my_cifar_train.py", line 110, intf.app.run() File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/platform/default/_app.py", line 11, in run sys.exit(main(sys.argv)) File "/Users/HANEL/my_cifar_train.py", line 107, in main train() File "/Users/HANEL/my_cifar_train.py", line 76, in train _, loss_value = sess.run([train_op, loss]) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 345, in run results = self._do_run(target_list, unique_fetch_targets, feed_dict_string) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 419, in _do_run e.code) tensorflow.python.framework.errors.OutOfRangeError: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0) [[Node: input/shuffle_batch = QueueDequeueMany[component_types=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/shuffle_batch/n)]] Caused by op u'input/shuffle_batch', defined at: File "/Users/HANEL/my_cifar_train.py", line 110, in tf.app.run() File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/platform/default/_app.py", line 11, in run sys.exit(main(sys.argv)) File "/Users/HANEL/my_cifar_train.py", line 107, in main train() File "/Users/HANEL/my_cifar_train.py", line 39, in train images, labels = my_input.inputs() File "/Users/HANEL/my_input.py", line 157, in inputs min_after_dequeue=200) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/training/input.py", line 453, in shuffle_batch return queue.dequeue_many(batch_size, name=name) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/data_flow_ops.py", line 245, in dequeue_many self._queue_ref, n, self._dtypes, name=name) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 319, in _queue_dequeue_many timeout_ms=timeout_ms, name=name) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 633, in apply_op op_def=op_def) File "/Users /HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1710, in create_op original_op=self._default_original_op, op_def=op_def) File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 988, in __init__ self._traceback = _extract_stack()
petrux.. 10
我遇到了类似的问题.在网上挖掘,结果发现如果你使用一些num_epochs
参数,你必须初始化所有local
变量,所以你的代码应该看起来像:
with tf.Session() as sess: sess.run(tf.local_variables_initializer()) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # do your stuff here coord.request_stop() coord.join(threads)
如果您发布更多代码,也许我可以深入了解它.在此期间,HTH.
我遇到了类似的问题.在网上挖掘,结果发现如果你使用一些num_epochs
参数,你必须初始化所有local
变量,所以你的代码应该看起来像:
with tf.Session() as sess: sess.run(tf.local_variables_initializer()) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # do your stuff here coord.request_stop() coord.join(threads)
如果您发布更多代码,也许我可以深入了解它.在此期间,HTH.
您可能正在处理解析的TFRecord示例错误.例如,尝试将张量重塑为不兼容的大小.您可以使用tf_record_iterator进行调试,以确认您正在阅读的数据以您认为的方式存储:
import tensorflow as tf import numpy as np tfrecords_filename = '/path/to/some.tfrecord' record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename) for string_record in record_iterator: # Parse the next example example = tf.train.Example() example.ParseFromString(string_record) # Get the features you stored (change to match your tfrecord writing code) height = int(example.features.feature['height'] .int64_list .value[0]) width = int(example.features.feature['width'] .int64_list .value[0]) img_string = (example.features.feature['image_raw'] .bytes_list .value[0]) # Convert to a numpy array (change dtype to the datatype you stored) img_1d = np.fromstring(img_string, dtype=np.float32) # Print the image shape; does it match your expectations? print(img_1d.shape)