我正在尝试编写一个脚本,允许我绘制一个数字图像,然后确定在MNIST上训练的模型的数字.
这是我的代码:
import random import image from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import numpy as np import scipy.ndimage mnist = input_data.read_data_sets( "MNIST_data/", one_hot=True ) x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize (cross_entropy) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for i in range( 1000 ): batch_xs, batch_ys = mnist.train.next_batch( 1000 ) sess.run(train_step, feed_dict= {x: batch_xs, y_: batch_ys}) print ("done with training") data = np.ndarray.flatten(scipy.ndimage.imread("im_01.jpg", flatten=True)) result = sess.run(tf.argmax(y,1), feed_dict={x: [data]}) print (' '.join(map(str, result)))
由于某些原因,结果总是错误的,但当我使用标准测试方法时,准确率为92%.
我认为问题可能是我如何编码图像:
data = np.ndarray.flatten(scipy.ndimage.imread("im_01.jpg", flatten=True))
我试着查看next_batch()函数的tensorflow代码,看看他们是如何做到的,但我不知道如何与我的方法进行比较.
问题可能也在其他地方.
任何有助于提高80 +%准确度的帮助将不胜感激.
我发现了我的错误:它编码反向,黑色是255而不是0.
data = np.vectorize(lambda x: 255 - x)(np.ndarray.flatten(scipy.ndimage.imread("im_01.jpg", flatten=True)))
固定它.