当前位置:  开发笔记 > 编程语言 > 正文

CS231n:如何计算Softmax损失函数的梯度?

如何解决《CS231n:如何计算Softmax损失函数的梯度?》经验,为你挑选了1个好方法。

我正在观看Stanford CS231的一些视频:用于视觉识别的卷积神经网络,但不太了解如何使用软件丢失函数计算分析梯度numpy.

从这个stackexchange答案,softmax梯度计算如下:

在此输入图像描述

上面的Python实现是:

num_classes = W.shape[0]
num_train = X.shape[1]
for i in range(num_train):
  for j in range(num_classes):
    p = np.exp(f_i[j])/sum_i
    dW[j, :] += (p-(j == y[i])) * X[:, i]

任何人都可以解释上面的代码片段是如何工作的?softmax的详细实现也包括在下面.

def softmax_loss_naive(W, X, y, reg):
  """
  Softmax loss function, naive implementation (with loops)
  Inputs:
  - W: C x D array of weights
  - X: D x N array of data. Data are D-dimensional columns
  - y: 1-dimensional array of length N with labels 0...K-1, for K classes
  - reg: (float) regularization strength
  Returns:
  a tuple of:
  - loss as single float
  - gradient with respect to weights W, an array of same size as W
  """
  # Initialize the loss and gradient to zero.
  loss = 0.0
  dW = np.zeros_like(W)

  #############################################################################
  # Compute the softmax loss and its gradient using explicit loops.           #
  # Store the loss in loss and the gradient in dW. If you are not careful     #
  # here, it is easy to run into numeric instability. Don't forget the        #
  # regularization!                                                           #
  #############################################################################

  # Get shapes
  num_classes = W.shape[0]
  num_train = X.shape[1]

  for i in range(num_train):
    # Compute vector of scores
    f_i = W.dot(X[:, i]) # in R^{num_classes}

    # Normalization trick to avoid numerical instability, per http://cs231n.github.io/linear-classify/#softmax
    log_c = np.max(f_i)
    f_i -= log_c

    # Compute loss (and add to it, divided later)
    # L_i = - f(x_i)_{y_i} + log \sum_j e^{f(x_i)_j}
    sum_i = 0.0
    for f_i_j in f_i:
      sum_i += np.exp(f_i_j)
    loss += -f_i[y[i]] + np.log(sum_i)

    # Compute gradient
    # dw_j = 1/num_train * \sum_i[x_i * (p(y_i = j)-Ind{y_i = j} )]
    # Here we are computing the contribution to the inner sum for a given i.
    for j in range(num_classes):
      p = np.exp(f_i[j])/sum_i
      dW[j, :] += (p-(j == y[i])) * X[:, i]

  # Compute average
  loss /= num_train
  dW /= num_train

  # Regularization
  loss += 0.5 * reg * np.sum(W * W)
  dW += reg*W

  return loss, dW

小智.. 14

不确定这是否有帮助,但是:

义 真的是指标功能 义,如这里所述.这(j == y[i])在代码中形成表达式.

此外,相对于权重的损失梯度是:

义

哪里

义

这是X[:,i]代码的起源.



1> 小智..:

不确定这是否有帮助,但是:

义 真的是指标功能 义,如这里所述.这(j == y[i])在代码中形成表达式.

此外,相对于权重的损失梯度是:

义

哪里

义

这是X[:,i]代码的起源.

推荐阅读
手机用户2502852037
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有